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Abstract

Sales from the US Strategic Petroleum Reserve (SPR) are conducted using basis
auctions, in which winning bidders’ final payments are indexed to spot prices. This
mechanism can eliminate potential inefficiencies arising from private information about
the evolution of oil prices between auction and delivery, benefiting the seller (the US
government). Reduced form evidence suggests that bids in SPR sales are consistent
with pure private values despite significant uncertainty and a deep resale market. In a
stylized model calibrated to the 2022 SPR drawdown, the use of basis auctions gener-
ates tens of millions of dollars in savings with limited private information.
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1 Introduction

In 2022, the United States Department of Energy (DOE) auctioned 180 million barrels of
crude oil from the Strategic Petroleum Reserve (SPR). A distinctive feature of the auction
mechanism used by DOE is price adjustment : the price paid by a winning bidder is linked
to the value of an oil price index at delivery, which may occur weeks or months after the
conclusion of the auction. This paper investigates the implications of this design choice.

Price adjustment mechanisms are ubiquitous in commodities contracts, power purchase
agreements, and many other settings. In the context of long-term contracting, a principle
motivation for price adjustment is to mitigate parties’ incentives to breach or seek rene-
gotiation as opportunity costs evolve over the life of a contract (Goldberg, 1985). Price
adjustment can also improve surplus by mitigating moral hazard problems and preventing
the dissipation of rents through costly information acquisition (Goldberg and Erickson, 1987;
Joskow, 1988). In the context of auction design, price adjustment generates contingent pay-
ments, which can reduce information rents (Hansen, 1985; Riley, 1988) and limit distortions
from the winner’s curse (Skrzypacz, 2013), among other effects.

This paper focuses on the competitive implications of price adjustment for potential
buyers of SPR crude. An important feature of SPR auctions is that bidders’ valuations
depend on future oil prices, which are uncertain. Section 2 presents a simple model that
illustrates how linking final payments to an oil price index can eliminate the value of private
information about future oil prices, so that bidding strategies and allocations depend only on
heterogeneity in bidders’ idiosyncratic opportunity costs. By transforming a common values
auction with more dispersed information to a private values auction with less dispersed
information, price adjustment can increase total surplus and DOE’s expected revenue. At
the same time, price adjustment greatly reduces the incentive for winning bidders to default,
which could otherwise be severe enough to undermine DOE’s objectives.

The benefits of price adjustment in the model depend crucially on the similarity between
the oil price index and the common component of bidders’ valuations. If there are important
non-price sources of common values—for example, due to uncertain quality or uncertain
transportation costs—or if the oil price index is otherwise imperfect, the particular form of
price adjustment used by DOE could deliver few practical benefits. Thus, an assessment
of the effectiveness of price adjustment in SPR auctions ultimately turns on the empirical
question of whether DOE’s basis auctions retain a significant common values element or not.

I address this empirical question by testing whether observed bidding behavior in SPR
auctions is consistent with private values. Evidence in favor of private values suggests that
DOE’s current basis auction format delivers greater expected revenue and improved efficiency
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relative to a fixed price alternative. In turn, such evidence illustrates a more general benefit
of price adjustment in long-term contracting environments characterized by competition
between potential counterparties. Conversely, evidence against private values would highlight
a practical limitation of price adjustment—namely, the difficulty of constructing suitable
price indices—and would indicate scope for improvement of DOE’s current mechanism.

To motivate the empirical approach, Section 3 describes the institutional environment
in greater detail and introduces bidding data taken from the 2022 SPR drawdown. At
its core, an SPR release entails a collection of parallel pay-as-bid (discriminatory) basis
auctions for differentiated lots of crude oil stored at different sites on the US Gulf Coast.1 In
practice, the strategic environment is complicated by capacity constraints that limit delivery
to particular locations as well as high minimum bid quantities that reflect the considerable
fixed costs of coordinating crude oil deliveries. These complications make it difficult to
explicitly characterize a more realistic bidding equilibrium than the one introduced in Section
2, precluding the use of structural methods to disentangle private and common values.2

Given the complexity of the auction environment, I consider two complementary tests
that are valid under relatively weak conditions. First, I consider a reduced form test of
common values developed for sovereign debt auctions by Nyborg et al. (2002) and Bjønnes
(2001).3 To implement this test, I exploit the fact that the time elapsed between the auction
and delivery is lengthy and varies considerably within the sample. I find that bids are no
less aggressive and no steeper when this measure of uncertainty is greater, consistent with
private values. Second, I consider a test of independent private values (IPV) developed
by Hickman et al. (2021) and previously applied in a multiunit auction environment by
Richert (2024b). Specifically, I test for within-auction correlation in bids after controlling
for participation and key auction characteristics, finding that IPV cannot be rejected in the
data. Given the favorable power properties of the Hickman et al. (2021) test, which I confirm
in numerical experiments, this negative result can plausibly be viewed as evidence in favor
of IPV and hence as evidence for pure private values. Together, these results suggest that
private information plays a limited role in SPR auctions, consistent with the model.

To conclude the paper, I aim to benchmark the aggregate effects of price adjustment
1The pay-as-bid and uniform price auctions are the two most commonly used auction formats for selling

divisible goods (such as sovereign debt or electricity). In the pay-as-bid auction, winning bidders pay their
expressed willingness-to-pay for each inframarginal unit.

2Bonaldi et al. (2024) decompose private and common values in sovereign debt auctions by estimating a
parametric model of a uniform price auction due to Vives (2011). There are no comparable parametric models
for the pay-as-bid auction. Recent empirical work on pay-as-bid auctions in the industrial organization
literature has exclusively assumed private values (Hortacsu and McAdams, 2010; Hafner, 2023).

3Other applications include Elsinger and Zulehner (2007) and Mariño and Marszalec (2023). A similar
approach was considered in Hortaçsu (2002).
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during the 2022 SPR drawdown in the context of a calibrated uniform price auction model
based on Vives (2011). Unlike the DOE’s pay-as-bid auction, the uniform price auction
admits a tractable class of parametric linear Bayes Nash equilibria even for complex infor-
mation structures featuring both private and common values. I calibrate the distribution of
future oil prices from crude oil futures and bidders’ idiosyncratic opportunity costs from ob-
served bids, leaving private information unspecified.4 The model yields plausible conditions
on private information under which price adjustment could have increased revenue by tens
of millions of dollars in an environment similar to the 2022 SPR drawdown.

Related literature The paper makes three main contributions to the literature. First, I
contribute to the literature on price adjustment in long-term contracting referenced above
by highlighting the value of price adjustment as a tool for shaping competition between
potential counterparties. Second, I contribute to the auctions literature by further exploring
the effects of contingent payments in environments with both common and private values.
The majority of literature on contingent payment auctions falls within the private values
paradigm and emphasizes the potential reductions in information rents that are achievable
with non-cash auction designs, often contrasting this benefit with potential moral hazard
problems if the winner is required to undertake costly ex post actions (DeMarzo et al.,
2005) or adverse selection (Che and Kim, 2010; Kong et al., 2022). Bhattacharya et al.
(2022) differ in considering an auction environment with pure common values and point out
that contingent payments can reduce bidders’ need to protect against the winner’s curse.5

In this paper’s model of SPR sales, both of these effects are present, as well as a third:
price adjustment increases the correlation between bid levels and the private components of
bidders’ valuations, which (at least in this setting) generates an improvement in efficiency.

Finally, I provide the first game theoretic analysis of the SPR drawdown mechanism.
In doing so, this paper complements prior work in macroeconomics analyzing whether SPR
releases stabilize oil prices (Newell and Prest, 2017; Killian and Zhou, 2020; Stevens and
Zhang, 2021).6 Earlier work in operations research addresses optimal procurement and
drawdown policies for petroleum reserves (Teisberg, 1981; Oren and Wang, 1986).

4Observed bids are informative under the assumption that outcomes of DOE’s pay-as-bid auctions (most
importantly, revenue) would not be significantly different under the uniform price format. In general, the
pay-as-bid and uniform price auctions are not revenue equivalent and their relative ranking is an empirical
question (see, e..g, Ausubel et al., 2014). Few reliable estimates of revenue differences have been obtained due
to the difficulty of solving for equilibria in either format with generic value distributions. In a recent paper
circumventing this problem, Richert (2024a) finds that the difference in revenue between discriminatory and
uniform price auctions is 0.16% for Turkish treasury auctions.

5This observation is also made in Skrzypacz (2013). In finance, it is standard to consider environments
in which the seller is privately informed rather than the buyers (Nachman and Noe, 1994).

6See also Razek et al. (2023) for macroeconomic analysis of the 2022 SPR releases.
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2 Understanding price adjustment in SPR sales

This section illustrates the central insights of the paper using a stylized model motivated by
the details of SPR sales, which are further described in Section 3. Sales from the SPR can
be described as basis auctions. I compare the basis auction format to a generic fixed price
auction format. The analysis shows how the basis auction format can improve total surplus
and limit the information rents earned by bidders, benefiting DOE. I also discuss ex post
incentives, focusing on how the basis auction limits winning bidders’ incentive to default.

Suppose the government aims to sell exactly Q barrels of crude oil from the SPR using an
auction. For the moment, we assume that all bidders are oil refiners who each demand exactly
K barrels of crude oil. There are N such oil refiners, who each differ in their opportunity
costs of purchasing SPR crude. Suppose refiner i can always purchase K units of crude
on the open market at price pi = W + ui where W is an oil price index and ui is a cost
basis capturing the difference between i’s marginal cost of crude and the index price. To
simplify the analysis, let K = 1 and Q = K, so that a single refinery is awarded exactly K
barrels of crude oil with probability one in equilibrium. Because refiners’ marginal costs are
constant, this setup corresponds to the so-called “flat demands” model of Ausubel (2004),
which provides a tractable starting point for analyzing multiunit auctions. With Q/K = 1

the pay-as-bid auction is strategically equivalent to a first price auction for a single indivisible
good, and can therefore be analyzed using standard methods.

Each oil refiner’s cost basis ui is assumed to be privately known. Furthermore, each
bidder privately observes an unbiased estimate wi of the true but unknown ex post index
price W . I assume that wi is drawn independently across bidders from a distribution Fw

having log-concave density fw with support on a bounded interval [w , w̄], while ui is drawn
independently across bidders and from a distribution Fu having log-concave density fu with
support on a bounded interval [u, ū]. I assume that wi is independent of ui. Importantly,
log-concavity of fu and fw ensures that bidders can be ordered according to a scalar “type”
si = wi/N + ui (Goeree and Offerman, 2003).

Importantly, delivery of crude oil does not occur until weeks or months after the auction
has concluded. During this time, conditions in the broader oil market may change signifi-
cantly. Because bidders’ private signals w1, . . . , wn are distributed independently, the mean
signal w̄ = 1

n

∑
i≤nwi represents the best available forecast of W at the time of the auction.7

Hence, w̄ can be viewed as the common value component of bidders’ valuations at the time
of the auction, while the realization of W remains unknown until delivery.

7w̄ is the “best” estimate in the sense that w̄ is the lowest-variance unbiased estimator of W that can
be constructed from the signals w1, . . . , wn. This structure induces a game similar to the “Wallet Game” in
Bulow and Klemperer (2002).
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A central choice facing DOE is the selection of an auction format. One natural candidate
mechanism is a fixed price pay-as-bid auction. Under the assumptions on preferences and
quantities stipulated above, bidders submit flat demand curves, and a fixed price pay-as-bid
auction corresponds to a first price auction. This simplification makes it straightforward
to characterize bidders’ strategies in a pure-strategy Bayes Nash equilibrium under a few
additional restrictions. In particular, we assume that the winning bidder is obligated to
take delivery on a known date, that default is impossible, and that there is no reserve price.
Under these assumptions, we obtain the following well-known result.

Proposition 1. Let yi = maxj 6=i sj. The N-tuple of strategies (β1 (·) , . . . , βN (·)), where

βi (x) = E [w̄ + ui|si = x, yi ≤ x]− E [x− yi|si = x, yi ≤ x] , (1)

is an equilibrium of the fixed price pay-as-bid auction.

All proofs are contained in the Appendix.
Equation (1) has a standard interpretation. The first term represents i’s interim assess-

ment of his ex post opportunity cost of purchasing SPR crude conditional on winning the
auction. This term reflects bidders’ anticipation of the winner’s curse: the winning bidder
learns that other bidders had lower types, and hence that wi is likely an overestimate of w̄.
The second term in (1) represents i’s information rent, which captures the extent to which
bidder i “shades” his true type in equilibrium. Information rents are greater when bidders’
types are more dispersed, while the severity of the winner’s curse depends on the distribution
of wi.

In practice, DOE does not sell crude using a fixed price auction format. Instead, DOE
uses a (pay-as-bid) basis auction. In a basis auction, bids express a willingness to pay in
terms of a price adjustment factor (PAF) relative to the index price W . If i wins the auction
after bidding d per barrel, he is obligated pay W + d per barrel to DOE upon delivery.
Proposition 2 characterizes a pure-strategy Bayes Nash equilibrium of this game.

Proposition 2. Let yi = maxj 6=i uj.The N-tuple of strategies (δ1 (·) , . . . , δN (·)), where

δi (x) = E [yi|yi ≤ x] , (2)

is an equilibrium of the basis auction.

Equation (2) is familiar as the equilibrium bidding strategy in the symmetric equilibrium
of a first price auction with independent private values. Importantly, (2) does not depend
on bidders’ private information wi or on the realization of the mean signal w̄. For a fixed
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number of bidders, this difference translates into greater revenue for the seller, and to greater
surplus overall.

Proposition 3. DOE’s expected revenue is greater in the basis auction than in the fixed
price auction. Moreover, the expected total surplus is larger.

The basis auction improves seller revenue for two reasons. First, because the winner of
the basis auction is the bidder with the highest cost basis ui rather than the highest type si,
the basis auction creates greater total surplus in expectation.8 Second, because bidders in
the basis auction have a smaller amount of relevant information, they earn lower rents.

Proposition 3 offers one rationale for why DOE may prefer a basis auction to a fixed price
auction. However, it is not clear that the main purpose of the SPR release is to raise revenue
for DOE (Congressional Research Service, 2020), or to maximize surplus total surplus. A
second rationale for why DOE may prefer a basis auction relates to efficiency: under the
maintained assumption of bidder symmetry, the bidder with the highest cost basis ui is
bound to win the basis auction.9 DOE may value this form of efficiency for at least two
reasons. Because oil refiners face capacity constraints, the stabilizing effect of SPR sales on
oil prices may be stronger in the case that SPR crude is allocated to refiners with greater
opportunity costs. Second, divorcing allocations from the private signals wi eliminates the
incentive for costly information gathering, which could otherwise induce a wasteful “arms
race.”

Price adjustments for quality In practice, DOE further adjusts prices for crude oil
quality. Specifically, DOE adjusts final payments in accord with the degree to which the
API gravity and sulphur content of crude taken at delivery differ from levels published in
the Notice of Sale. I elaborate on the significance of crude oil quality below.

Endogenous default In the fixed price auction, winning bidders are incentivized to de-
fault ifW is lower than βi (wi/n+ ui)−ui at delivery. This incentive could be strong as SPR
sales are typically held in the midst of rapid price increases when market and/or geopolitical
volatility are elevated, which may be times when forecasts are especially noisy. It is clear
that there is no such incentive in the basis auction. Because δ (ui) ≤ ui, the winning bidder
always prefers delivery of SPR crude to his outside option on the delivery date.

8Efficiency need not hold in the case of bidder asymmetry (Maskin and Riley, 2000). In SPR sales, the
distinction between oil refiners and marketers (discussed below) is potentially an important source of bidder
asymmetry.

9In the fixed price auction this is not necessarily the case, since a bidder’s type also depends on his signal
wi of the common value.
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Accounting for the possibility of default could affect the comparison between the fixed
price and basis auctions.10 If SPR contracts are viewed as options rather than obligations,
bidding in the fixed price auction could become more aggressive, increasing the seller’s rev-
enue conditional on sale but also increasing the incentive to default ex post, potentially
reducing revenue. In practice, it may be possible to deter default via punishment. Under
current DOE guidelines, defaulting bidders incur severe penalties.11 Because bidders are
long-lived and deep-pocketed in comparison to the value of a one-time crude oil purchase,
such penalties may be sufficient to deter default.12 Moreover, existing penalties are designed
for a basis auction regime, in which the model implies incentives to default are absent. In a
fixed price regime, DOE could impose different and stronger penalties.

Hedging with forward contracts In reality winning bidders might choose to hedge their
purchases using forward contracts. If all bidders in the fixed price auction were required to
hedge, and if hedging contracts were perfect and costless, the fixed price auction would be
equivalent to a basis auction. Conversely, hedging renders the basis auction more similar to
a fixed price auction. Thus, the effects of the basis auction emphasized in this section are
most salient when forward contracts are costly to obtain or otherwise imperfect.

Other extensions In general multiunit auction environments in which bidders have het-
erogenous demands, declining marginal valuations, and are possibly endowed with private
information, it is typically impossible to characterize bidding equilibria outside of a small
number of parametric models (Rostek and Yoon, 2023). Even under the assumption of inde-
pendent private values (IPV), relatively little is known about equilibrium properties of the
pay-as-bid auction in particular despite its wide usage in sovereign debt auctions and other
settings (Hortacsu and McAdams, 2018; Pycia and Woodward, 2025).

2.1 Empirical implications

The conclusions of the previous section depend crucially on the assumption that the price
index used to determine bidders’ final payments coincides with the common component of

10Early papers analyzing the effect of ex post withdrawal or default in auctions include von Ungergn-
Sternberg (1991), Waehrer (1995), and Zheng (2001). Empirical contributions include Asker (2000) and
work on delays and cost overruns in highway procurement (Lewis and Bajari, 2011; Decarolis, 2014).

111% of the contract price per day until a secondary sale can occur and 100% of any losses incurred by
DOE. Defaulting bidders are further threatened with debarment from future sales.

12In current practice, default can occur without penalty in some pre-specified circumstances (for example,
due to unexpected default of a subcontractor) or at the discretion of the contracting officer. The severity of
a penalty must be judged in conjunction with the likelihood that an exemption would be granted.
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valuations. If this assumption is violated, the basis auction may retain a common values
element.

The price indices used to determine final payments in SPR sales may be imperfect for a
number of reasons. First, transportation cost shocks particular to accessing SPR facilities
could differentially raise the price of SPR crude relative to other sources of crude for all
potential buyers. Second, price adjustments for API gravity and sulphur content may not
fully address payoff-relevant variation in crude oil quality, which is not fully known until
delivery.

To incorporate this possibility into the model, I now assume that bidders’ valuations
take the form pi = W +Z + ui, where Z represents a (possibly non-contractible) differential
between the index price and the common component of bidders’ valuations. In addition to
ui and wi, each bidder privately observes an unbiased estimate zi of the true but unknown ex
post differential Z. The signal zi is drawn independently across bidders from a distribution
Fz having log-concave density fz with support on a bounded interval [z , z̄]. zi is independent
from wi and ui. If final payments are indexed to W rather than W + Z, the basis auction
format will not fully eliminate the common values component from the auction.

Proposition 4. Define s̃i = zi/N + ui. Let yi = maxj 6=i s̃j.The N-tuple of strategies
(δ1 (·) , . . . , δN (·)), where

δi (x) = E [z̄ + ui|s̃i = x, yi ≤ x]− E [x− yi|s̃i = x, yi ≤ x] , (3)

is an equilibrium of the basis auction.

Proposition 4 provides the primary testable implication of the model: the basis auction
is a private values auction if and only if Z is identically zero. The (potential) benefits of
the basis auction suggested above may be small in magnitude if the price index W is not
significantly different from the common component of bidders valuationsW+Z. Contrasting
(2) with (3), it is clear that zi constitutes an additional source of information rents and that
bidders must now account for the winner’s curse. Moreover, the bidder with the highest
private cost basis ui is no longer certain to win the auction.

The next result establishes that bids are decreasing in the variance of Z.

Proposition 5. Let F̃z be a mean-preserving spread of Fz. Bids in the basis auction are
lower under F̃z than under Fz.

This result provides a second testable implication of the model: bid levels should be
negatively correlated with instruments that shift the second moment of the common compo-
nent of bidders’ valuations W + Z separately from W . In other words, variables that make
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payoffs less certain for all bidders apart from their effect on the oil price index used for price
adjustment should correlate with lower bid levels in the basis auction.

Section 4 presents two alternative testing strategies motivated by these observations.
Evidence in favor of private values suggests that the price indices used by DOE eliminate
all empirically relevant sources of common values. Evidence of private information instead
suggests that DOE could benefit from an alternative auction design, such as one with dif-
ferent price adjustment criteria. Before describing the testing strategies in detail, I provide
additional background on SPR auctions and introduce the bidding data.

3 The 2022 Emergency Drawdown

In 2022, United States initiated seven large sales (or “drawdowns”) from the SPR. In the
remainder of the paper, I use bidding data from these sales to test the main prediction of the
stylized model: if the price indices used to determine final payments are sufficiently similar
to the common component of bidders’ valuations, then firms’ observed bidding strategies
should be indistinguishable from a private values model. Before presenting the main results,
I provide further background on SPR sales and introduce the data.

3.1 Background

The SPR was created by the 1975 Energy Policy and Conservation Act (ECPA) in response
to the 1973 oil crisis. Currently, the SPR stores up to 713.5 million barrels (MMbbl) of crude
oil at four distinct locations along the US Gulf Coast, shown in Figure 1. Each location stores
a combination of sweet (i.e., low sulfur) and sour (i.e., high sulfur) crude oils in underground
salt caverns. Locations differ in their capacities, crude oil characteristics, access to pipelines
and shipping terminals, and proximity to major Gulf Coast refineries.

The main purpose of the SPR is to “protect the U.S. economy from severe petroleum
supply interruptions” by distributing stockpiled oil in times of crisis (DOE, 2024). Prior to
2015, SPR sales occurred rarely and were modest in size.13 Beginning in 2015, Congress
mandated a series of sales in order to raise revenue for budgetary purposes. These sales were
dwarfed in size by a series of seven emergency sales totaling 180 MMbbl conducted in 2022
in response to oil market disruptions associated with the Russia-Ukraine conflict. I focus on
these seven sales; detailed bidding data for past sales is publicly available from DOE.

13Notable “emergency” releases occurred after Operation Desert Storm (17.3 MMbbl), Hurricane Katrina
(11 MMbbl), and the 2011 Libyan crisis (30.6 MMbbl).
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Figure 1: SPR System Map

Source: DOE.

3.2 The mechanics of SPR sales

Rules governing sales from the SPR were first promulgated by DOE in 1983.14 Each sale
begins with the issuance of a Notice of Sale. In the Notice of Sale, DOE stipulates target
volumes of sweet and sour crude oil to be sold from designated storage sites. Figure 2
provides an example sales specification taken from the third sale that occurred in 2022. In
this sale, which occurred on June 1, the DOE sought to release one “stream” of sweet crude
and one stream of sour crude from the Bayou Choctaw storage site near Baton Rouge, LA.
For the sweet crude “master line item” (MLI), 1,100 thousand of barrels (Mbbl) were offered
for delivery between June 21 and June 30. For the sour crude MLI, 6,000 Mbbl of sour crude
were offered for delivery between July 1 and August 15. The rate at which crude oil can be
transferred from storage to particular “points of sale” is limited by physical transfer capacity
and scheduling constraints. The “delivery line items” (DLIs) in Figure 2 indicate that for
the sweet crude MLI, there were no constraints on pipeline delivery at the St. James point
of sale, but pipeline deliveries to the Baton Rouge (Bourre) point of sale were limited to 225
Mbbl of the total 1,000 Mbbl MLI quantity. For the sour crude MLI, the same two pipelines
DLIs were available for most of the 6,000 Mbbl MLI quantity, but 800 Mbbl was only made
available for vessel delivery (e.g., to oil barges).

A bid specifies a quantity demanded and price for delivery of oil at a particular point
of sale. Firms are permitted to submit multiple bids. However, because of the logistical
costs inherent to the physical transfer of oil, the minimum allowed bid size is large relative
to the total quantity available (typically 225-350 Mbbl). For each MLI (crude oil stream),

14https://www.spr.doe.gov/reports/SSPs/PART625.html
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Figure 2: Notice of Sale Example

Source: DOE Notice of Sale (Emergency Drawdown No. 2B, May
24, 2022).

the auction is cleared as a pay-as-bid (discriminatory) auction subject to DLI (point of sale)
constraints. Bids are fulfilled from high price to low price until the total MLI quantity is
exhausted, unless the supply of a particular DLI is exhausted (in which case any remaining
MLI quantity is allocated other DLIs). In the previous example, if the high bidder for Bayou
Choctaw Sweet requested 225 Mbbl at Baton Rouge (Bourre), leaving no remaining supply,
then any further bids for delivery at Baton Rouge (Bourre) would be discarded and the
remaining 875 Mbbl could only be sold to bidders requesting delivery at St. James. On the
other hand, if the high bidder requested 1,100 Mbbl at St. James, no further supply would
be available for bidders requesting delivery at Baton Rouge (Bourre).

As discussed above, an important feature of the SPR auction is that bids are not ex-
pressed in fixed prices, but rather as a basis relative to an index price (referred to as a price
adjustment factor or PAF). For sweet crude, the index price is the average over the five days
surrounding delivery of the WTI Houston Weighted Average Month 1, Houston Close (or
“WTI Houston”) oil price index; for sour crude, the Mars Weighted Average Month 1, Hous-
ton Close (or “Mars”) oil price index is used. The window for taking delivery of purchased
crude typically does not begin until a few weeks after the auction, and can last more than
a month (as in the Bayou Choctaw example above). During this time, the index price can
move considerably. Table 1 shows the average value of WTI Houston and Mars crude oil
price indices during the delivery window in comparison to the “base reference price” (BRP)
listed in the Notice of Sale.15 After the first sale, the sweet and source crude price indices

15The reported crude oil indices correspond to the Bloomberg tickers USCRMEHC (Crude Oil WTI
Houston) and USCRMARS (Crude Oil Mars). These indices are not identical to the specific price indices
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were 12% higher than the BRP on the average day during the delivery window. More often,
prices fell. After the fourth sale, price indices were more than 25% lower on average.

One notable feature of the auction environment absent from the model in Section 2 is a
reserve price fixed at 95% of DOE’s estimate of the market value of crude. DOE reserves
the right to reject bids that are “below 95 percent of the sales price, as estimated by the
Government, of comparable crude oil being sold in the same area at the same time.” I
describe this reserve price as nominal because bids below it may still be accepted “if the
Contracting Officer determines such action is necessary to achieve SPR crude oil supply
objectives and such offered prices are reasonable.” As explained below, the nominal reserve
price appears not to have been binding during the 2022 SPR drawdown.

3.3 Description of bidding data

This section briefly describes patterns observed in the bidding data. To begin, Table 2
presents summary statistics on participation, demand, and winning bids for each DLI and
MLI. On average, 10.9 bidders submitted 3.7 bids each for a given sweet crude MLI, often
submitting bids on multiple DLIs at once. The highest bid was $1.19 greater than the index
price and $4.08 greater than the lowest winning bid. The lowest winning bid was $2.89
less than the index price, but $2.24 greater than the nominal reserve. Clearing prices were
generally higher for pipeline delivery in comparison to vessel delivery. Similar patterns are
present for the sour crude sales. Two key differences are that auctions for sour crude had
fewer bidders on average, and higher prices relative to the corresponding price index.

Domestic oil refiners were by far the largest purchasers of crude oil in the 2022 SPR sales.
74% of the crude oil sold in the 2022 SPR releases was purchased by one of the four largest US
refiners (Marathon, Valero, ExxonMobil, and Phillips 66) or by Motiva (the Saudi Aramco
subsidiary which owns the massive Port Arthur Refinery in Texas). Most of the remaining
crude oil was purchased by widely known commodities trading firms.

Interestingly, more than 15.2% of bids by quantity were submitted below the nominal
reserve price, indicating that bidders may not have expected the reserve to be enforced.
Consistent with this belief, there were no auctions in which the DOE rejected otherwise
competitive bids for being lower than the reserve price. However, the vast majority of these
low bids were unsuccessful. Only 1.4% of accepted bids were below the nominal reserve.

used by DOE in practice, which are published exclusively by Argus Americas Crude and could not be
obtained for this study. It is reasonable to expect that these series are highly correlated.
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4 Tests of common and private values

In this section I aim to test whether bidders in the SPR auction bid as if they compete in a
private values environment, as suggested by the stylized model in Section 2.

Exclusive tranches Empirical methods for auctions typically assume that the unit of
observation is a single, independent auction with a fxied number of potential and active
bidders. The latter assumption can be violated in SPR sales due to DLI constraints: with
respect to a single DLI, competition may change discontinuously with quantity.16

To illustrate, we can again consider the case of Bayou Choctaw Sweet in Figure 2. Bidders
who submitted bids for the St. James DLI faced more competition for quantities above than
below 875 Mbbl because quantities in excess of 875 Mbbl were also contested by bidders who
submitted bids for the Baton Rouge (Bourre) DLI.

To abstract from complications arising from DLI constraints, the primary unit of obser-
vation for the empirical analysis is an exclusive tranche. An exclusive tranche is defined as a
portion of crude oil that accessible only to bidders on a particular DLI. In the example, there
is one exclusive tranche of 875 Mbbl associated with St. James, but no exclusive tranche
associated with Baton Rouge (Bourre). For Bayou Choctaw Sour, also shown in Figure
2, there were three exclusive tranches: one for each DLI. In total, there were 54 exclusive
tranches (an average of 2.16 per MLI per sale). Each exclusive tranche can be viewed as a
distinct pay-as-bid auction with a fixed number of bidders. Restricting attention to exclusive
tranches involves little loss of data: 89% of crude oil made available during the 2022 SPR
drawdown and 93% of revenue can be linked to an exclusive tranche.17

4.1 Test of common values

Few formal tests of private information have been developed for standard multi-unit auctions,
much less a nonstandard multi-unit setting with high minimum bid quantities and within-
auction capacity constraints.18 In this section I consider a reduced form test of common

16A similar effect occurs in competitive wholesale electricity markets due to transmission congestion.
17Revenue calculation based on base reference prices. In principle one might construct additional “residual”

tranches that span multiple DLIs. For example, the 225 Mbbl contestable by bidders on both St. James and
Baton Rouge (Bourre) in the Bayou Choctaw Sweet example might be viewed as a tranche with a number
of bidders that depends on residual demand from Baton Rouge (Bourre) bidders after the first 875 Mbbl is
exhausted. I do not pursue this approach because the number of bidders is endogenous in this case.

18Hortaçsu and Kastl (2012) exploit the availability of an instrument shifting some bidders’ information in
the context of Canadian treasury auctions. Bonaldi et al. (2024) estimate a parametric model of a uniform
price auction in which bidders have both private and common values, enabling a decomposition exercise. I
lack the data to implement the test of Hortaçsu and Kastl (2012), while the lack of convenient and flexible
parametric models for pay-as-bid auctions precludes an approach similar to Bonaldi et al. (2024).
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values developed by Nyborg et al. (2002) and Bjønnes (2001).
Proposition 5 implies that bid levels in the basis auction are decreasing in the uncertainty

of the residual common value Z whenever indexing fails to induce a private values auction.
Nyborg et al. (2002) argue more generally that bidders in pay-as-bid auctions with common
values tend to reduce the level and steepen the slope of their bids as uncertainty becomes
more severe.19 These qualitative predictions are founded on Ausubel (2004)’s notion of the
“champion’s plague,” which generalizes the winner’s curse to multiunit auctions.20 Evidence
of correlation between observed bids and uncertainty is therefore suggestive of common
values.

A limitation of the Nyborg et al. (2002) framework is that similar qualitative predictions
can be generated by bidder risk aversion. Bjønnes (2001) suggests that exogenous variation
in participation (absent form the empirical setting of Nyborg et al. (2002)) can be used to
distinguish between private information and risk aversion in this context, because increased
participation exacerbates the champion’s plague but dilutes (ex post) risk.

In the case of SPR auctions, one convenient measure of uncertainty is the average time
between the auction date and delivery. A second is the CBOE Crude Oil Volatility Index
(or OVX).21 The latter measure closely proxies for the uncertainty of oil prices but remains
informative if the specific price indices used by DOE are imperfect. The former also correlates
with oil price uncertainty but more plausibly accounts for sources of uncertainty less directly
related to oil prices (for example, if transportation costs are less precisely known over longer
time horizons). Bid levels can be measured using a firm’s quantity-weighted average PAF.
The steepness of bid slopes is captured by intra-bidder bid dispersion, measured by the
quantity-weighted standard deviation in PAFs across a firm’s bids.

Table 4 summarizes regressions of bid levels and dispersion on both measures of uncer-
tainty, after controlling for other key observables. As in Nyborg et al. (2002) and Bjønnes
(2001), observations are weighted by the measure of uncertainty, and two specifications for
the bid level are included: one using bidder-tranche level average bids, and one using the
tranche-level average of bidders’ within-tranche average bids.22 Following Bjønnes (2001), I
control for bidder participation. However, because bidder participation may be endogenous,
I instrument for it using the location of the storage site (see Figure 1).23 The identifying

19An additional prediction of Nyborg et al. (2002) is that bidders will reduce their maximum quantity
demanded if the seller imposes a reserve price. I do not evaluate this prediction.

20The winner’s curse refers to the idea that the winner of a single unit auction learns that other bidders
had lower signals (“bad news”); the champion’s plague refers to the idea that winning relatively more units
reveals relatively worse news.

21See, e.g., Chen et al., 2018 for a discussion of this index.
22The latter helps to address bias that may arise from correlation in the error terms within an auction.
23Bjønnes (2001) does not instrument for bidder participation.
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assumption is that location affects the intensity of competition, but not bidders’ valuations.
First stage regression results are reported in Table 3; the F -statistic is 8.11.

If a common values component is present after indexing bids to oil prices, we would
expect to observe a negative relationship between bid levels and uncertainty. In Table 4,
the coefficients on uncertainty in columns (1), (2), (4), and (5) are all positive. Thus, bid
levels appear to increase when uncertainty is greater. More specifically, the point estimates
imply that shifting the delivery window back by a week increases average bids by about $0.20
per barrel. An increase of similar magnitude is implied by a 5-10 point increase in OVX.
These results can be viewed as inconsistent with the presence of residual private information,
although the effects are small in magnitude and none is statistically significant. The lone
significant effect from uncertainty (at the 10% level) indicates that bid dispersion increases
with oil price volatility, which could be consistent with private information. However, the
corresponding effect of time until delivery on bid dispersion is negative. Taken together,
these results do not provide strong evidence in favor of common values.

Bjønnes (2001) finds a negative association between participation and bid levels, and
interprets this as evidence that private information is quantitatively more important than
risk aversion. Here I find a positive effect: an additional bidder increases average bid levels
by $0.68 per barrel. Likewise, I find a negative association between participation and bid
dispersion. These results, although imprecise, are suggestive of the opposite conclusion: that
private information (if it is present) is not of first-order importance.

4.2 Test of private values

In this section I consider a direct test of independent private values (IPV) due to Hickman
et al. (2021). The central idea underlying this test is that, under the null hypothesis of
IPV with no unobserved heterogeneity, there should be no residual correlation in bids after
controlling for the number of bidders N and any other observables.24

In a single-unit context, this idea can be implemented by regressing observed bids on
the mean of within-auction rival bids, observables, and a flexible function of N . IPV is
rejected if the coefficient on within-auction rival bids is different from zero. This idea can
be extended to the context of a multiunit auction by restricting attention to quantity levels
that are common to all submitted bids. For example, if all bidders are willing to accept a
single unit of the good, one might use the highest price bid submitted by each bidder.

Simulation results and empirical applications in Hickman et al. (2021) suggest that this
test has favorable power for single-unit auctions even in small samples. It rejects not only

24The test does not necessarily require an assumption of exogenous participation.
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common values, but also various alternative private values models such as the affiliated
private value (APV) model, the conditional independent private values (CIPV) model, and
IPV models with auction-level unobserved heterogeneity. In Appendix B, I verify the finite-
sample power of the test against CIPV and pure common values using simulated bidding
data from a uniform price auction model calibrated to SPR sales.

A further practical complication that arises in the context of SPR sales is that bidders are
allowed to stipulate a minimum bid quantity that may be much larger than the maximum
quantities demanded by rival bidders. To address this issue, I implement the test separately
for all exclusive tranches and for the subsample of exclusive tranches in which no such
bids were submitted. In the former case, I retain bids with high minimum quantities for
the purpose of calculating N but exclude them from the estimation sample and from the
calculation of the mean of rivals’ bids.

Table 5 reports the test results. As in Richert (2024b), each specification includes a
cubic polynomial of N . Focusing on the first column, the coefficient on the mean rival bid
is almost precisely zero. Thus, the test fails to reject the null of IPV in the subsample of
auctions without large minimum bid quantities. A similar result is shown in the second
column, which corresponds to the full sample of auctions. Together with the results above,
these findings provide suggestive evidence that the SPR auction mechanism induces bidding
strategies consistent with independent private values.

5 Gains from price adjustment

In this section I quantify a stylized equilibrium model of a multiunit auction intended to
resemble the 2022 SPR drawdown. I use the model to benchmark the impacts of price
adjustment for different information structures. While only illustrative, the results show
how price adjustment could have significantly increased DOE’s expected revenue.

Vives (2011) studies a parametric model of a uniform price auction with an information
structure that features both private and common values. I build on this model. First, I
calibrate the model parameters using observed bidding data as well as contemporaneous
oil price forecasts.25 The calibration suggests bidders’ valuations would have been highly
correlated in a fixed price auction because future oil prices are significantly more variable
than bidders’ private cost bases. Given the possibility of private information, this suggests
that adverse selection (the winner’s curse, or in this case the champion’s plague) might have
been severe, depressing revenue and leading to inefficient allocations.

25Because the bidding data is generated from a pay-as-bid auction, among other major simplifications,
this procedure cannot be viewed as estimation.
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5.1 Benchmark model

There are N bidders and Q barrels of oil for sale. Bidders’ marginal valuations take the
form:

vi (q) = W + ui − λq

where λ > 0 captures inventory costs (or any other source of diminishing marginal valu-
ations). W is the realized oil price index at delivery, which is assumed to be distributed
N (µw, σ

2
w). ui is the bidder i’s private cost basis and is distributed N (µu, σ

2
u).

Bidders compete by submitting demand schedules in a uniform price auction. Prior to
the auction each bidder observes a signal si = W + ui + εi where εi ∼ N (0, σ2

ε ) captures
bidder i’s uncertainty about his own valuation. ui and εi are mutually independent, inde-
pendent ofW , and independent across bidders. Bidders valuations are potentially correlated
through W . For all bidders i 6= j, cor (W + ui,W + uj) = ρ. This structure differs from the
one considered in Section 2 but encompasses the IPV model and (asymptotically) the pure
common values model, along with many intermediate information structures.26

I focus on linear, symmetric Bayes Nash Equilibria (BNE). Vives (2011) shows that a
BNE exists and is unique provided that the number of bidders N is sufficiently large relative
to the dispersion of information. Equilibrium demand schedules have a simple closed form.

I maintain the assumption throughout this section that price adjustment fully eliminates
the common component of valuations in DOE’s pay-as-bid basis auction. Under this assump-
tion, DOE’s basis auction can be represented in the framework of Vives (2011) by a uniform
price auction in which µw = σw = σε = 0: bidders know their own valuations perfectly but
only know the distribution of rivals’ valuations; there is no common value.

The fixed price auction can be represented by a uniform price auction in which σw, σε > 0

and ρ = σ2
w/(σ

2
w + σ2

u). When σε > 0 bidders are uncertain about their own valuations, as in
the classical common values model. Given σw > 0 and ρ = σ2

w/(σ
2
w + σ2

u), the common value
component of valuations coincides with W .

The set of parameters necessary to compare auction formats is therefore θτ = (λτ , µτu, σ
τ
u, µ

τ
w, σ

τ
w, σ

τ
ε ),

where τ denotes the tranche. Except where necessary I suppress the τ superscripts.

5.2 Calibration

This section briefly describes the calibration strategy; further details are provided in Ap-
pendix C. Note that nine exclusive tranches having N ≤ 2 observed bidders were dropped

26See Figure 3 along with the discussion in Section B.
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from the sample used for calibration due to equilibrium nonexistence in the uniform price
basis auction. I defer discussion of σε to the next section.

Oil price distribution µτw is calibrated based on the daily average of the front-month
WTI Futures Contract prices during the delivery period as evaluated at the last date prior
to the sale. I adjust these prices (upwards for sweet, downwards for sour) by a constant
basis reflecting differences between WTI and the oil price indices for sweet and sour crude
specified in the Notices of Sale. στw is calibrated from the above-mentioned OVX index.

Cost basis distribution I select µτu such that expected revenue in the uniform price basis
auction coincides with DOE’s realized revenue. I fix a single value στu = σu for all tranches
τ based on the mean standard deviation of purchase shares within each tranche.

Inventory costs I calibrate λτ = λ based on the average slope of aggregate demand in
the vicinity of the clearing price after making an adjustment for competition. Intuitively,
bidders submit flatter demand schedules when facing more competition; therefore, the slope
of aggregate demand must be normalized across auctions with N .

5.2.1 Model validation

Table 6 reports sample moments from the bidding data alongside their expected analogues in
the calibrated uniform price basis auctions. By construction, revenue and quantity dispersion
are similar in the model and in the sample. Revenue matches exactly, while dispersion differs
slightly due to undersubscription of some exclusive tranches in the data. One informative
moment not targeted in the calibration is the bid-to-cover ratio, defined here as the total
quantity demanded at the minimum observed price tick relative to the tranche quantity. The
average bid-to-cover ratio in the sample was 3.04 versus 3.06 for the calibrated model.

5.3 Comparison of auction formats

Because the calibrated dispersion of oil prices σw is typically large relative to the calibrated
dispersion in opportunity costs σu, ρ is close to one for every tranche τ . On average across
tranches the calibrated correlation is 0.73 (95% bootstrap CI: [0.71, 0.75]), suggesting that
fixed price auctions would more closely resemble common than private values auctions.

A key difficulty in analyzing the fixed price auction is that the bidders’ valuation uncer-
tainty σε (more conveniently, bidders’ posterior uncertainty σW+u|s) is not easily quantified.
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The comparison to basis auctions depends crucially on this parameter: the expected revenue
gain from the basis auction format increases in bidders’ posterior uncertainty.

This can be seen as follows. If bidder i directly observes his own cost basis ui, σW+u|s

exclusive quantifies i’s residual uncertainty about the oil price index W after observing si.
When σW+u|s = 0, there is no residual uncertainty (bidder i knows W with certainty), and
the information structure simplifies to conditional independent private values (CIPV). In this
case, the seller’s expected revenue in the fixed price and basis price auctions is the same. For
σW+u|s > 0 uncertainty about W gives rise to adverse selection, leading bidders to submit
steeper demand curves and pushing equilibrium prices downwards. Hence, the basis auction
improves revenue even for small amounts of uncertainty aboutW for reasons similar to Riley
(1988). When σW+u|s is sufficiently large, equilibrium demand curves become nearly vertical
and the clearing price diverges to −∞ (Vives, 2011).27

The key question is whether expected revenue gains from the basis auction are economi-
cally significant for plausible levels of posterior uncertainty σW+u|s. To address this question,
I calculate the threshold uncertainly level σ∗W+u|s in each tranche required for the basis auc-
tion to improve expected revenue by $1 per barrel.28 This benchmark is notable because
expected revenue gains of $1 per barrel would imply total gains of more than $150 million
in the 2022 SPR drawdown (vs. $17 billion in total), a significant amount. I also calculate
σ∞W+u|s, the supremum of posterior uncertainty consistent with BNE given N .

A ratio σ∗W+u|s/σw = 1 implies that the revenue gain from the basis auction is equal to $1
per barrel when bidders receive uninformative signals aboutW (i.e., bidder i’s posterior belief
is σW+u|s ∼ N (µw + ui, σ

2
w)). A ratio σ∗W+u|s/σw < 1 implies that the revenue gain from the

basis auction is equal to $1 per barrel or more whenever bidders have posterior uncertainty
σW+u|s ∈ (σ∗W+u|s, σ

∞
W+u|s).

29 Across tranches in the calibrated model I find an average
ratio of σ∗W+u|s/σw = 0.44 (95% bootstrap CI: [0.37, 0.50]) and normalized interval width
(σ∞W+u|s − σ∗W+u|s)/σw = 0.40 (95% bootstrap CI: [0.36, 0.43]), implying significant revenue
gains over a wide range of information structures. This includes information structures in
which bidders have high precision signals and adverse selection is modest, as well as those
in which bidders know little more than the prior and adverse selection is severe.

27This pathology is well-known in the literature. To avoid it, it is conventional to assume that the aggregate
supply curve is elastic (or stochastic) either at the discretion of the seller or due to a fringe of price-taking
bidders (“noise traders”). Neither of these assumptions is well suited to the case of SPR auctions, where
quantities are fixed in advance and all bidders are sophisticated.

28This calculation holds tranche participation Nτ fixed. The analysis suggests that a switch from basis to
fixed price auctions is more likely to induce exit than entry, further reducing expected revenue.

29Above σ∞
W+u|s the model does not yield a clear prediction because a linear BNE does not exist. Other

types of equilibria may exist: for example, price-taking equilibria (PTE) in which bidders learn from prices
but do not account for price impact exist under less stringent conditions on N .
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If W is difficult to predict even for sophisticated market participants, and if the pay-as-
bid and uniform price auctions are expected to deliver similar outcomes empirically, then
these results are suggestive that the use of basis auctions plausibly delivered a revenue
improvement on the order of tens of millions of dollars (or more) in 2022.

6 Conclusion

This paper investigates the role of price adjustment in SPR release auctions. First, I use
an illustrative model to show that price adjustment improves efficiency, reduces information
rents, and reduces the risk of default. If the common component of bidders’ valuations
is exactly equal to the price index, bidders in the model behave as if they compete in a
private values environment despite being endowed with private information about future oil
prices. Empirically, I fail to find strong evidence of common values in bidding data from
the 2022 SPR drawdown, consistent with the implications of the model. This suggests that
price adjustment of the form used by DOE is an effective policy in the context of SPR
sales. Moreover, the apparent success of price adjustment in SPR sales, which broadly
resemble other forms of upstream contracting in oil markets, helps to complement existing
theoretical explanations for why price adjustment is often observed in long-term contracts –
an important question which has proven difficult to address empirically.
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A Proofs

Propositions 1 and 4 follow directly from Proposition 1 of Goeree and Offerman (2003). The
proof of Proposition 2 below closely follows the same argument.

Proposition 2

First, observe that we can write the conditional expectation in (2) as:

E [yi|yi ≤ x] =

∫ x

u
t · fyi (t)

Fyi (x)
· dt

Differentiating the right hand side with respect to x gives:

δ′i (x) = [x− E [yi|yi ≤ x]]
fyi (x)

Fyi (x)

The term in brackets is strictly positive because the event yi = x occurs with probability
zero. As fyi (·) is bounded above zero, it follows that δi (·) is strictly increasing.

Suppose that bidders 2, . . . , N adopt the strategy (2). Then bidder 1’s expected profit
is:

π1 (d) = {u1 − d}Fy1
[
δ−1 (d)

]
The derivative of π1 (·) with respect to d is:

π′1 (d) =
{
−
[
δ−1 (d)− E

[
y1|y1 ≤ δ−1 (d)

]]
+ {u1 − d}

} fy1 [δ−1 (d)]

δ′ (δ−1 (d))

Evaluating π′1 (·) at d = δ (x) yields:

π′1 (δ (x)) = {u1 − x}
fy1 (x)

δ′ (x)

Since we have shown that fy1 (·) /δ′ (x) is strictly positive, this shows that δ (x) is bidder 1’s
unique optimal bid.

Proposition 3

We make an argument in two parts. First, we show that expected information rents in the
basis auction must be smaller than expected information rents in the first price auction.
This follows from the following general property of order statistics for independent random
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variables drawn from log-concave distributions.

Lemma 6. Suppose that Y1, . . . , YN and X1, . . . , XN are samples of independent random
variables, with Yi = Xi + Ui for Ui ⊥ Xi and Xi having a log-concave density. Then:

E
[
Y(n:n) − Y(n−1:n)

]
≥ E

[
X(n:n) −X(n−1:n)

]
where Y(n:n) and Y(n−1:n) are the nth and (n− 1)th order statistics.

Proof. By Theorem 3.B.7 of Shaked and Shanthikumar (2007), it follows that X ≤disp X +

U = Y (that is, Y dominates X in the dispersive order). Theorem 3.B.31 says that if X ≤disp
Y , then Vi:n dominates Ui:n in the stochastic order for i ≥ 2, where Ui:n = Xi:n −Xi−1:n and
Vi:n = Yi;n − Yi−1:n.

To apply the lemma, note that the expected information rent is equal to the expected
difference between the first and second order statistics.

Next, we argue that the winning bidder’s pseudo-valuation in the fixed price auction is
lower in expectation than in the basis price auction. This is because:

E
[
S(n:n)

]
+

(
n− 1

n

)
E
[
wj|sj ≤ S(n:n)

]
=

1

n
E
[
wi|si = S(n:n)

]
+

(
n− 1

n

)
E
[
wj|sj ≤ S(n:n)

]
+ E

[
ui|si = S(n:n)

]
= E [wi] + E

[
ui|si = S(n:n)

]
≤ E [W ] + E

[
U(n:n)

]
where the second equality follows from the observation that:

E [wi] = E
[
wi|si = S(n:n)

]
P
(
si = S(n:n)

)
+ E

[
wi|si ≤ S(n:n)

] {
1− P

(
si = S(n:n)

)}
= E

[
wi|si = S(n:n)

] 1

n
+ E

[
wi|si ≤ S(n:n)

]
·
(
n− 1

n

)
Combining the previous results gives that the basis price auction generates greater expected
surplus, while reducing expected information rents. Thus, expected revenue is improved.

Proposition 5

First, expected surplus is lower under F̃z because

EF̃z
[
ui|si = S(n:n)

]
≤ EFz

[
ui|si = S(n:n)

]
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Second, information rents are larger because of Lemma 6. Thus, the seller’s expected revenue
is lower. In a symmetric and monotone equilibrium, it follows that bid levels are lower.

B Simulation Study

This section evaluates the power of the Hickman et al. (2021) test in small samples.
In order to generate simulated bid data, I adopt the uniform price auction model of Vives

(2011). Bidders are assumed to have marginal valuations of the form vi (q) = θiq−λq, where
θi = W +ui. The private cost bases ui are distributed ui ∼ N (0, σ2

u) and the oil price signals
wi are distributed wi ∼ N (0, σw) . Both ui and wi are assumed to be independent from each
other and independent across bidders. I assume (λ, σu, σw) = (100, 10, 20) based on typical
calibrated values from Section 5.30 Let σ̃2

e denote the inverse of 1
σ2
w
− 1

σ2
w+σ

2
u
, which implies

that V ar (θi|si) = σw when ρ = σ2
w

σ2
w+σ

2
u
(as in Section 5). In the exercises below I vary ρ and

σe without restricting the posterior variance V ar (θi|si).
Figure 3 depicts the information structure in the space of ρ and σε, where ρ denotes

the correlation cor (θi, θj) = ρ for all i 6= j. The origin corresponds to independent private
values. The vertical line that begins at (0, 0) encompasses IPV models in which bidders do
not perfectly observe their own valuations. The x-axis, where σε = 0, coincides the family
of conditional IPV models with increasingly greater correlation between bidder values. The
limit of perfect correlation in the CIPV model is a model of pure common values in which
all bidders are perfectly informed about the value of the good. The vertical line that begins
at the point (1, 0) encompasses classical pure common values with uncertain valuations,
with the severity of the winner’s curse increasing in σε. Finally, the interior shaded region
encompasses a class of mixed information structures with both private and common values.

The simulation design is as follows. To evaluate the power of the model, I consider the
ability of the Hickman et al. (2021) test to reject sequences of models that correspond to
rays through the origin like the dashed green line in Figure 3. For instance, the ray defined
by (t, αt) for α = 0 encompasses the family of CIPV models described above. Motivated by
the data, I generate samples of S auctions for S ∈ {50, 100, 500}. The total quantity sold in
each auction i is fixed at Q = 1000 Mbbl. The number of bidders in each simulated auction
is fixed at N = 5, the average number observed in the data.31

Figure 4 presents simulated power curves for a 5% test for each sample size along the
rays α ∈ {0, 0.5σ̃e, σ̃e}. Even for the case of S = 50 auctions, which is slightly less than

30Quantities are denominated in thousands of barrels (Mbbl).
31Note that when N is small (relative to the amount of private information), a symmetric linear BNE may

not exist. I drop auctions for which no such BNE exists.
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the number of exclusive tranches in the data (54), the test attains rejection rates above 75%
for ρ > 0.25 in the CIPV model. As σe increases for the same level of ρ, corresponding to
the introduction of private information, rejection rates decrease slightly but remain high for
modest deviations from IPV. One apparent limitation of the test implied by the results is
that the rejection rate at t = 0 is around 10% for all designs, above the nominal level.32

C Calibration Details

Oil price distribution First I discuss the calibration of oil price uncertainty. Let ot denote
the value of the CBOE Crude Oil Volatility Index (OVX) on date t. ot is an annualized
estimate of the expected 30-day standard deviation of oil prices.33 It is closely related to
the better known CBOE VIX, except that it is constructed from options on a particular oil
price ETF (the United States Oil Fund or USO) rather than options on the S&P 500 Index.
For a sale on date t of crude oil of sulphur type s ∈ {sweet, sour}, I take

σt,sw = pt,s ·

√
|Dt|−1

∑
s∈Dt (s− t)

365
· ot

100

where Dt is the set of days in the delivery window and pt,s is an estimate of the daily average
USO price during the delivery window. USO itself is constructed to track the price of West
Texas Intermediate Light Sweet Crude. To construct pt,s, I therefore define:

pt,0 = |Dt|−1
∑
s∈Dt

fWTI
t−1,s

where fWTI
t−1,s is the price at date t−1 of the front month WTI futures contract corresponding

to date s during the delivery window Dt, obtained from EIA. Finally, I define:

pt,s = pt,0 + δs

where δs is a basis between the price index corresponding to s in DOE’s Notice of Sale (WTI
Houston, Mars) estimated from the average difference between the front month WTI price
and USCRMEHC/USCRMARS in 2022.34

32In larger sample sizes the rejection rate appears to converge to the nominal level.
33https://www.cboe.com/us/indices/dashboard/ovx/
34In particular, I obtain δsweet = 1.22 and δsour = −3.29.
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Cost basis distribution and inventory costs In the uniform price approximation to
the basis auction, the dispersion in purchase shares X∗τi/Qτ is

V ar (X∗τi/Qτ ) =
1

Q2
τ

(
1− 1

N

)
·
(
N − 2

N − 1

)2

·
{
λ−1σu

}2
I therefore take λ−1σu as the sample mean of√(

1− 1

N

)−1
·
(
N − 2

N − 1

)−2
· V ar (X∗τi)

in the sample of exclusive tranches having N > 2.35

For λ−1, I observe that the slope mτ of the quantity-normalized aggregate demand∑
i≤N X (si, p) /Qτ for tranche τ in the uniform price model is given by

mτ =
N

Qτ

·
(
N − 2

N − 1

)
· λ−1

I obtain a value for λ−1 as the point estimate of the slope of xτk = N
Qτ

(
N−2
N−1

)
bτk in a

weighted linear regression of
∑

i≤N X (si, p) /Qτ on the collection of observed bid prices
bτ1, . . . bτK for each τ and tranche fixed effects, where the weight of price tick τk is wτk =

φ
(∑

i≤N X (si, bτk) /Qτ − 1
)
. This procedure approximates the average slope of the aggre-

gate demand curve in the vicinity of the clearing price, implicitly giving greater weight to
tranches with more participation (which tend to have more bid ticks). The normalization of
bτk by N

Qτ

(
N−2
N−1

)
varies with the level of competition to reflect the impacts of market power

and adverse selection (the winner’s curse).

35Under IPV, no symmetric linear BNE exists for N ≤ 2.
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Table 1: Mean Delivery Index Price (DIP) vs. Base Reference Price (BRP)

Sweet Crude Sour Crude
Date of Sale Delivery Window BRP DIP % ∆ BRP DIP % ∆

2022-03-08 24-84 days 95.15 106.99 12.44 92.60 103.76 12.06
2022-04-12 33-79 days 111.00 116.57 5.02 106.28 108.34 1.93
2022-06-01 20-75 days 113.39 110.51 -2.54 108.81 94.54 -13.11
2022-06-28 49-94 days 121.42 89.15 -26.58 114.21 85.47 -25.16
2022-08-02 45-80 days 103.68 87.39 -15.71 97.61 82.77 -15.20
2022-09-27 35-64 days 89.45 87.56 -2.12
2022-10-25 37-67 days 89.91 77.07 -14.28 83.86 71.39 -14.87

Notes: (1) Delivery index price is calculated from daily closing prices of Bloomberg tickers
USCRMEHC (Crude Oil WTI Houston) and USCRMARS (Crude Oil Mars), see main test for
discussion; (2) Base reference prices are obtained from auction-specific Notices of Sale; (3) Deliv-
ery windows vary by MLI and DLI, the maximum range is recorded.
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Table 2: Summary of Bidding Data (Sample Means)

Sweet Crude Sour Crude
Per DLI Per DLI Per DLI Per DLI

(Pipeline) (Vessel) Per MLI (Pipeline) (Vessel) Per MLI

Number of bidders 6.10 4.89 10.91 4.05 3.69 8.00
Number of bids 19.65 5.67 40.36 13.82 6.31 27.57
Number of winning bidders 3.30 1.11 6.00 2.36 1.23 4.36
Number of winning bids 8.55 1.25 16.45 7.71 3.20 13.86
Total quantity demanded 9906.75 2961.11 23962.27 7559.77 3880.38 16272.14
Total quantity sold 3825.00 643.75 7422.73 3927.14 1654.00 7072.14
Maximum winning PAF 0.42 -2.21 1.19 1.28 0.90 1.85
Average winning PAF -0.76 -2.23 -0.93 0.23 0.06 -0.08
Minimum winning PAF -2.03 -2.24 -2.89 -0.56 -0.58 -1.44
Nominal reserve PAF (5% BRP) -5.12 -5.06 -5.13 -5.18 -5.21 -5.15

Notes: 2022 SPR drawdown bidding data. Includes all bids. (1) PAF refers to price adjustment
factor; (2) Bid quantities are expressed in thousands of barrels (Mbbl).
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Table 3: First Stage Regression Results

Dependent variable:

N

Big Hill 1.238
(0.894)

Bryan Mound 0.453
(0.708)

West Hackberry 1.404∗
(0.764)

Sweet Crude 1.847∗∗∗
(0.605)

Vessel DLI 0.858
(0.541)

Tranche Size (MMbbl) 0.508∗∗∗
(0.129)

Constant 1.259∗
(0.744)

Observations 54
Adjusted R2 0.446
F Statistic 8.110∗∗∗ (df = 6; 47)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Notes: (1) Means and standard deviations of price adjustment factors (PAFs) are weighted by
bid quantity; (2) Volatility Index (OVX) is the closing price of the CBOE Crude Oil Volatility
Index on the auction date; (3) Observations are weighted by uncertainty (Days Until Delivery in
(1)-(3), Volatility Index (OVX) in (4)-(6); (4) Table reports unclustered heteroskedasticity-robust
standard errors.
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Table 4: Correlations between Bids and Uncertainty

Dependent variable:

Mean PAF Std. PAF Mean PAF Std. PAF

(1) (2) (3) (4) (5) (6)

Days Until Delivery 0.030 0.036 −0.007
(0.022) (0.025) (0.005)

Volatility Index (OVX) 0.023 0.042 0.014∗
(0.040) (0.028) (0.008)

N 0.523 0.680 −0.087 0.589 0.668 −0.061
(0.553) (0.504) (0.151) (0.514) (0.421) (0.127)

Sweet Crude −2.037 −2.372∗∗ 0.139 −2.149∗ −2.310∗∗∗ 0.084
(1.330) (1.127) (0.406) (1.237) (0.826) (0.359)

Vessel DLI −2.815∗∗∗ −2.720∗∗∗ 0.042 −2.809∗∗∗ −2.701∗∗∗ 0.009
(0.787) (0.587) (0.179) (0.739) (0.484) (0.170)

Tranche Size (MMbbl) −0.594∗ −0.711∗∗ 0.109 −0.641∗∗ −0.729∗∗∗ 0.091
(0.329) (0.303) (0.086) (0.308) (0.256) (0.076)

Constant −3.431∗ −3.997∗ 0.834∗∗ −3.046 −4.020∗ −0.345
(1.938) (2.216) (0.362) (2.405) (2.056) (0.388)

Unit of Observation Bidder-Tranche Tranche Bidder-Tranche Bidder-Tranche Tranche Bidder-Tranche
Observations 268 54 268 268 54 268
Adjusted R2 0.058 0.206 0.055 0.067 0.253 0.066

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: (1) Means and standard deviations of price adjustment factors (PAFs) are weighted by
bid quantity; (2) Volatility Index (OVX) is the closing price of the CBOE Crude Oil Volatility
Index on the auction date; (3) Observations are weighted by uncertainty (Days Until Delivery in
(1)-(3), Volatility Index (OVX) in (4)-(6); (4) Table reports unclustered heteroskedasticity-robust
standard errors.
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Table 5: Test of Independent Private Values (Hickman et al., 2021)

(1) (2)

Mean Rival PAF 0.019 −0.056
(0.087) (0.090)

Sweet Crude 0.180 −0.565
(0.715) (0.467)

Vessel DLI −1.876∗∗∗ −1.660∗∗∗
(0.682) (0.439)

Constant −2.001∗∗ −1.553∗∗∗
(0.779) (0.520)

Polynomial in N Cubic Cubic
Restricted Sample Yes No
Observations 144 217
R2 0.087 0.088
F Statistic 2.170∗∗ (df = 6; 137) 3.383∗∗∗ (df = 6; 210)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: (1) Restricted sample excludes auctions with any bids stipulating high minimum quantities;
(2) Table reports unclustered heteroskedasticity-robust standard errors.
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Table 6: Model Validation

Sample Model
Mean Std Mean Std

Mean Price (PAF) -0.69 1.71 -0.69 1.71
Quantity Dispersion 777.51 626.08 829.03 185.05
Bid-to-Cover Ratio 3.04 1.26 3.06 2.11

Notes: (1) Sample consists of 45 exclusive tranches having 3 or more bidders. Model is the
calibrated uniform price basis auction. For “Sample” sample means are reported; for “Model”
tranche-level expected values. (2) Dispersion defined as the standard deviation in purchase quan-
tities within each auction. (3) Bid-to-cover ratio defined as the ratio of aggregate demand at the
minimum observed price bid to quantity available.
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Figure 3: Information Structures in the Vives (2011) Model
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Figure 4: Simulated Rejection Rates for (ρ, σe) = (t, αt)

(a) α = 0.0× σ̃e
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(b) α = 0.5× σ̃e
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(c) α = 1.0× σ̃e
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Notes: (1) As tincreases (x-axis), the information structure is further from IPV. See Appendix B
for details. (2) Approximate rejection rates from 250 simulations.
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