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1 Introduction

An important question in industrial organization is whether firms act as if they are risk

averse. A growing body of literature in empirical industrial organization, and particularly in

the empirical auctions literature, has produced evidence of firm behavior consistent with risk

aversion (Häfner, 2023; Bolotnyy and Vasserman, 2023; Luo and Takahashi, 2025; Wittwer

and Allen, Forthcoming). Nearly all of this work adopts the classical expected utility frame-

work. Yet the use of expected utility in modeling firm behavior is not without tension.1 On

the one hand, expected utility attributes risk aversion to the diminishing marginal utility of

money, a force which is not easily reconciled with profit maximization.2 On the other, firms

that regularly manage risk such as traders and insurers are known to quantify risk using

non-expected utility frameworks such as Conditional Value-at-Risk (CVaR).3

The expected utility (EU) model can be viewed as one special case of the rank dependent

utility model (Quiggin, 1982). The focus of our study is a second, complementary special

case: Yaari (1987)’s dual utility (DU) model. The DU model differs from the EU model

in attributing risk aversion to nonlinear probability weighting rather than the diminishing

marginal utility of wealth. Nonlinear probability weighting is well-known to resolve the Allais

paradox and other apparent violations of expected utility theory and has been demonstrated

to predict behavior in auction experiments (Goeree et al., 2002; Armantier and Treich,

2009b). Furthermore, nonlinear probability weighting is consistent with the absence of wealth

effects and nests popular risk management frameworks such as CVaR.

Structural models featuring rank-dependent utility have previously been estimated in

the context of consumer demand (Ciccheti and Dubin, 1994; Barseghyan et al., 2013). Less

progress has been made for the case of Bayesian games such as auctions.4 In this paper we
1General critiques of expected utility theory, especially in reference to consumer behavior, are well known;

see, e.g., Wakker (2010), Barberis (2013), and the experimental literatures referenced therein.
2Yaari (1987) emphasizes this point explicitly: “How often has the desire to retain profit maximization

led to contrived arguments about firms’ risk neutrality?”
3See, e.g., Sarykalin et al., 2014.
4One exception is Aryal et al. (2018), who study auctions in which bidders are ambiguity averse. The

model we consider nests at least one form of ambiguity aversion as a limit case (Gershkov et al., 2022).

2



seek to address this gap in the literature by developing an empirical framework for auctions

in which bidders are equipped with DU preferences. In doing so, we aim to provide a starting

point for future research and an empirical counterpart to the pioneering work of Gershkov

et al. (2022) on mechanism design under constant risk aversion, discussed further below.

We first introduce a simple first price auction game in which bidders have DU preferences.

Formally, bidders’ attitudes towards risk are captured by a cumulative distribution function

g (·) that summarizes bidders’ distortions of the decumulative distribution of payoffs (winning

at a given price, or losing). When g (·) is convex, bidders are risk averse; when it is linear,

bidders are risk neutral. We characterize a symmetric Bayesian Nash equilibrium (BNE) of

the game under the assumption of independent private values (IPV). As in the EU model,

dual risk averse bidders “overbid” in the sense that the risk of losing the auction motivates

aggressive bidding. In contrast to the EU model, monetary payoffs enter linearly into the

optimal bidding problem, yielding a simple closed form for the equilibrium bidding strategy.

In turn, this linearity simplifies identification, estimation, and counterfactual analysis.

Our first contribution is to study identification of this model. We demonstrate that

identification of g (·) is similar to identification of the von Neumann-Morgenstern utility

function u (·) in the EU model (previously investigated by Guerre et al., 2009). Similar

to Guerre et al. (2009), we begin by establishing non-identification of g (·) in a sample

of identical first price auctions. The observed bid distribution suffices to identify either

the distribution of valuations or bidders’ risk preferences, but not both. Thus, additional

variation is needed. In another parallel to Guerre et al. (2009), we show that exogenous

variation in participation is sufficient under mild regularity conditions on g (·). With two

or more observed participation levels, g (·) is fully determined by the spacings between bid

quantiles. Because of the linearity inherent to the dual utility model, the latter result extends

naturally to the practically relevant case of multiplicative auction-level heterogeneity.

Our second contribution is to propose nonparametric and semiparametric estimation

procedures for the model, allowing for observed and unobserved multiplicative auction-level
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heterogeneity. Our starting point is the deconvolution method of Cho et al. (2024), which

enables separation of the empirical bid distribution into auction- and bidder-level compo-

nents. Our equilibrium characterization provides a mapping from the distortion function

g (·) to shifts in the bidder-level component as participation changes. Thus, latent variation

in the “homogenized” bid distribution across participation levels suffices to recover g (·). We

propose a one-step procedure in the spirit of Grundl and Zhu (2019), but using an estimator

based on characteristic function-matching rather than likelihood maximization.

In moderately sized samples, a more efficient semiparametric estimator can be obtained

within this framework by restricting g (·) to a particular class of distortion functions. For

our empirical application we adopt the semiparametric approach with a power distortion

function. We explore the performance of this estimator numerically before applying it to

bidding data from United States Forest Service (USFS) timber lease sales.

Examining a sample of USFS leases set aside for small businesses, we find evidence that

bidders (small timber-harvesting firms) are mildly risk-seeking. While this result may be

somewhat surprising, the implication is simply that bidders appear to “underbid.” In other

words, the estimates suggest that bidders are overly optimistic, acting as if the distribution

of rival bids is weaker than it truly is. Such a result is consistent with the standard intu-

ition from prospect theory that agents are often risk-seeking when faced with large but low

probability gains (Tversky and Kahneman, 1992), as describes bidder payoffs here.

In general, violations of risk neutrality can have important implications for optimal auc-

tion design. To conclude the paper, we show that a risk-neutral seller that failed to account

for possible violations of risk neutrality would underestimate the optimal reserve by 2% in

our application, resulting in a slight reduction in expected revenue.

Related literature We directly contribute to the literature on bidder risk aversion in

USFS timber lease sales. Lu and Perrigne (2008) obtain evidence in favor of bidder risk

aversion by comparing bidding behavior in sealed bid (first price) and ascending price (second
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price) sales. Bidding strategies in the first price auction are affected by risk aversion, while

bidding strategies in the second price auction are not, greatly simplifying identification and

estimation.5 However, bidding data from parallel auction formats are rarely available, and

identification relies on the strong assumption that the distribution of bidder valuations is

invariant to the auction format. Building on the identification analysis in Guerre et al.

(2009), Campo et al. (2011) estimate a semi-parametric CRRA model using only first price

auction data and conclude that the data favor bidder risk aversion.6 Grundl and Zhu (2019)

estimate a semi-parametric CRRA model in a different sample of timber lease sales (the

same sample we examine) and conclude that evidence in favor of risk aversion significantly

weakens after accounting for unobserved auction heterogeneity. Aryal et al. (2018) find

evidence of ambiguity aversion (a different type of non-expected utility preferences) in a rich

model that accounts for unobserved heterogeneity fitted with Bayesian methods. Zincenko

(2018) proposes a fully non-parametric estimation framework for the EU model.

We complement the growing theoretical literature on mechanism design with non-expected

utility agents. While the implications of the dual utility model are largely similar to that

of the expected utility model, some differences have been identified in the literature. Ger-

shkov et al. (2022) show that the revenue-maximizing auction mechanism under DU differs

qualitatively from the EU case in that bidders are “fully insured” (i.e., they receive payoffs

independent of rivals’ types). Moreover, the revenue-maximizing auction mechanism itself—

generally considered intractable for the EU model—admits an analytical characterization

under an easily verified sufficient condition.7 In related work, Gershkov et al. (2023a) and

Gershkov et al. (2023b) obtain new results on security design and optimal insurance, respec-

tively, when agents are dual risk averse. Che and Gale (2006) establish that risk neutral
5As in the case of the EU model, it remains optimal for bidders with DU preferences continue to bid their

true preferences in the second price auction (Li et al., 2025). Thus, a similar strategy would be feasible.
6We follow these papers in abstracting from potentially relevant forces including selective entry (Li et al.,

2015) and asymmetries between different types of bidders (Athey et al., 2011).
7To our knowledge, there have been no prior quantifications of the optimal mechanism for EU case,

likely on account of the optimal mechanism’s complexity (Maskin and Riley, 1984). We view the feasibility
of providing such a quantification as a noteworthy feature of our framework. Unfortunately, the sufficient
conditions provided by Gershkov et al. (2022) do not appear to be satisfied in our empirical application.
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sellers prefer the first price auction to the second price auction when bidders are dual risk

averse. In Li et al. (2025), we extend Che and Gale (2006)’s result to a setting in which the

seller is also dual risk averse and characterize the optimal reserve prices in each case.

2 Model

We consider a simple independent private values (IPV) auction environment in which sym-

metric bidders are endowed with Yaari’s dual utility (Yaari, 1987). This section formally

introduces dual utility and describes the symmetric, monotone, pure strategy Bayesian Nash

equilibria (BNE) of the first-price sealed bid auction.

A seller is endowed with a single indivisible good. The seller sets a reserve price r ≥ 0.

There are I potential bidders where I ≥ 2 is an integer. Bidder i has a private valuation

vi for the good. All potential bidders’ valuations are drawn independently from a common

distribution F (·). The distribution F (·) is known to all bidders and has a compact support

[0, v̄] for v̄ <∞ and a density f (·) that is strictly positive for all v ∈ [0, v̄].8

The essential feature of our model consists in bidders’ attitudes towards risk, described

as preferences over lotteries. If x is a random variable drawn from distribution H (·) with

bounded support [0, x̄], then bidder i’s utility from x is:

U (x) =

∫ x̄

0

g (1−H (s)) ds (1)

where g (·) is an increasing function on [0, 1] satisfying g (0) = 0 and g (1) = 1 (in other

words, a cumulative distribution function or cdf). The certainty equivalent (1) corresponds

to Yaari’s dual utility with distortion function g (·). We assume that each bidder has the

same distortion function g (·).

Like the expected utility model, the dual utility model nests risk neutrality. If g (·) and
8The assumption that the lower bound of the value distribution is equal to zero is without loss.
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H (·) are differentiable, integrating (1) by parts gives

U (x) =

∫ x̄

0

s · g′ (1−H (s)) dH (s)

Risk neutrality obtains when g (·) is linear, in which case the expression on the right is

equal to the expectation of x. Dual risk aversion obtains when g (·) is convex: an increasing

g′ (·) implies that agents place greater weight on the probability of lower payoffs, for which

1−H (·) is larger.9 Dual risk seeking obtains when g (·) is concave.

Relationship to the expected utility model The expected and dual utility models can

be viewed as parallel special cases of the rank dependent utility model (Quiggin, 1982). In

the rank dependent utility model (RDU), bidder i’s utility takes the form

U (x) =

∫ x̄

0

u (s) · g′ (1−H (s)) · dH (s) (2)

where g (·) is defined as above and u (·) is a von Neumann-Morgenstern utility function.

The EU model is the special case in which g (·) is the identity function; the DU model is the

special case in which u (·) is the identity function. In the former, risk aversion arises from the

diminishing marginal utility of wealth; in the latter, from nonlinear probability weighting.

The rank-dependent utility model accommodates both channels.

2.1 Equilibrium

In order to solve for the equilibrium of the first price auction, we make the following technical

assumptions on the common distortion function g (·).

Assumption 1. g (·) is differentiable and has bounded derivatives almost everywhere.

In a first price sealed bid auction, a bidder with valuation vi who submits a bid bi

9In fact, convexity is a stronger assumption than necessary to describe risk aversion in this context. It is
necessary only that g (x) /x is increasing (Armantier and Treich, 2009a).
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exceeding the seller’s reserve price r receives a simple lottery πi that pays vi − bi if bi is

the highest bid, and zero otherwise. Let β (·) denote the equilibrium bidding strategy. If a

bidder with private valuation vi bids as if her type were v′i, then her utility is:

U (πi|vi, v′i) =

∫ vi−β(v′i)

0

g
(

[F (v′i)]
N−1
)
ds+

∫ π

vi−β(v′i)
g (0) ds

which simplifies to:

U (πi|vi, v′i) = g
(

[F (v′i)]
N−1
)

[vi − β (v′i)] (3)

In order for truthful revelation to be optimal given (3), the equilibrium bidding strategy β (·)

must satisfy the following differential equation:

dg
(
F (vi)

N−1
)

dvi
· [vi − β (vi)] = g

(
F (vi)

N−1
)
· β′ (vi) . (4)

Together with the boundary condition β (r) = r, the differential equation (4) can be solved

to obtain a closed-form expression for the equilibrium bidding strategy.

Proposition 1. In a first price auction with reserve price r ≥ v, the equilibrium bidding

strategy for bidder i is:

β (vi; r) = vi −
∫ vi
r
g
(
F I−1 (s)

)
ds

g (F I−1 (vi))
(5)

for vi ≥ r.

Proposition (1) implies that bidders in the first price auction shade their true valuations

by an amount that depends on the number of competing bidders, the value distribution

F (·), and the shape of the distortion function g (·). When g (·) is equal to the identity

function, (5) reduces to the well-known expression for the equilibrium bidding strategy in

the symmetric IPV environment under risk neutrality (Krishna, 2009, Ch. 2). Because
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g (x) /x is increasing when g (·) is convex, an immediate corollary is that bidders who are

dual risk averse submit weakly higher bids than bidders who are risk neutral. Conversely,

bidders who are dual risk seeking submit weakly lower bids.

3 Identification

In this section, we consider identification of the bidders’ distortion function g (·) given a

sample of first price auctions. We begin with a non-identification result mirroring the classic

non-identification result of Guerre et al. (2009) for the EU model. Then we demonstrate

how the model is identified when there is variation in the number of potential bidders.

3.1 Non-identification

A dual utility auction model [g, F ] consists of a distortion function g (·) and a value distri-

bution F (·). Let Q (b1, . . . , bI |I) denote the joint distribution of bids in a first price auction

with exactly I bidders. We restrict attention to bid distributions that satisfy symmetry

and independence conditional on I. In particular, we assume Q (b1, . . . , bI |I) = Πi≤IQ (bi|I)

for some marginal bid distribution Q (·|I) supported on a compact interval
[
b, b
]
. Our first

concern is whether any such Q (·|I) can be rationalized by a unique dual utility model [g, F ].

We show that this is not the case.

To build intuition for this result, we first examine the first order condition (4) of the

optimal bidding problem. Let bi denote the equilibrium bid of a bidder with valuation vi. As

in Guerre et al. (2000), we observe that F (vi) = Q (bi|I) in equilibrium. This observation

allows us to re-write the first order condition (4) for bidder i in terms of the equilibrium bid

distribution. In particular,

vi = bi +
1

(I − 1)

Q (bi|I)

q (bi|I)
· ψg

(
QI−1 (bi|I)

)
(6)
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where ψg (x) := g(x)
x·g′(x)

. If g (·) is known, then (6) suffices to identify the distribution of bidder

valuations F (·) given Q (·|I). In particular, the seminal identification result of Guerre et al.

(2000) is obtained when g (·) is assumed to be the identity function, in which case ψg (x) = 1

for all x ∈ [0, 1]. If g (·) is not known, however, (6) implies that the optimality of equilibrium

bidding alone is not sufficient to separately identify F (·) from bidder risk preferences.

Proposition 2. The dual utility auction model [g, F ] is not identified.

The proof of Proposition 2 consists in showing that, whenever a marginal bid distribution

Q (·|I) is rationalized by a dual utility model [g, F ], we can construct an alternative dual

utility model [g̃, F̃ ] that also rationalizes Q (·|I). In particular, we can take g̃ (·) = g (·)δ for

any δ > 1 and then construct a corresponding F̃ (·) that rationalizes Q (·|I). Formally, we say

that Q (·|I) is rationalized by a dual utility model [g, F ] if the pseudovalue function ξg (b) =

b+ 1
I−1
· Q(b|I)
q(b|I) · ψg

(
QI−1 (b|I)

)
is strictly increasing on

[
b, b
]
and F (v) =

∫ ξ−1
g (v)

0
dQ (s|I).

This result provides a dual utility counterpart to the well-known non-identification result

of Guerre et al. (2009) for the EU model. Given the close parallelism and g (·) in the DU

model and u (·) in the EU model, such a result is not surprising. As in the EU setting, non-

identification implies additional variation is required for identification. In the next section,

we show how identification can be attained given exogenous variation in I.

3.2 Identification with exogenous participation

Our strategy to establish identification parallels the argument developed by Guerre et al.

(2009) for the EU model: we make use of the fact that quantiles of the bid distribution must

vary with I, while quantiles of the value distribution do not.

We first re-write the optimal bidding conditions in quantile form. Let v (α) denote the

α-quantile of the value distribution F (·) and the b (α|I) the α-quantile the bid distribution

10



when there are I potential bidders.10 Since (6) is true for all bidders, it follows that:

v (α) = b (α|I) +
1

(I − 1)αI−2q (b (α|I) |I)
z
(
αI−1

)
(7)

for all α ∈ [0, 1], where z (x) := g (x) /g′ (x) ≡ xψg (x). Let bR (α|I) := b
(
α1/(I−1)|I

)
denote

quantile function of the highest rival bid for a given bidder (i.e., the left inverse of Q (·|I)I−1).

Because F (·) is absolutely continuous with strictly positive density, b (·|I) and bR (·|I) are

almost everywhere differentiable. We can therefore write (7) more concisely as:

v (α) = b (α|I) + b′R (α|I) · z
(
αI−1

)
(8)

The key observation is that for any two participation levels 2 ≤ I1 < I2, we can write:

b (α|I1) + b′R (α|I1) · z
(
αI1−1

)
= b (α|I2) + b′R (α|I2) · z

(
αI2−1

)
for all α ∈ [0, 1]. Re-arranging and making a change of variables, we obtain:

z (α) =
[
b
(
α

1
I2−1 |I1

)
− b
(
α

1
I2−1 |I2

)]
· 1

b′R

(
α

1
I2−1 |I2

) +
b′R

(
α

1
I2−1 |I1

)
b′R

(
α

1
I2−1 |I2

) · z (α I1−2
I2−1

)

Fix any K ≥ 1. By recursion,

z (α) =
∑

0≤k≤K

{
[b (αk|I1)− b (αk|I2)]

1

b′R (αk|I2)

k−1∏
l=0

b′R (αl|I1)

b′R (αl|I2)

}
+RK (α) (9)

for each α ∈ (0, 1] where RK (α) =
(∏K−1

l=0
b′R(αl|I1)

b′R(αl|I2)

)
z (αK) is a remainder term and αk =

exp

{(
1

I2−1

)(
I1−1
I2−1

)k
logα

}
. Because the first term is a function of observables, it is clear

from (9) that z (·) is identified if the remainder term RK (α) vanishes as K becomes large.

The next result shows this is the case provided that z (·) is well-behaved near zero.
10Throughout this section we disregard the seller’s reserve price r. As discussed in Haile and Tamer (2003),

only the conditional distribution of bidder valuations above the reserve price can be identified.
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Lemma 1. If limx→0+ z (x) = 0 and limx→0+ z
′ (x) > 0, then limK→∞RK (α)→ 0.

It follows immediately from Lemma 1 that g (·) is identified when the sufficient condition

is satisfied: because g (1) = 1, it is easily shown that g (α) = exp
{
−
∫ 1

α
z (s)−1 ds

}
for α ∈

(0, 1]. The sufficient condition is satisfied by many common distortion functions including

the power distortion function g (α) = αγ with γ ≥ 1, for which z (α) = γ−1α. We discuss

some other common functional forms for the distortion function in Section 4.2.

3.2.1 Auction-level heterogeneity

Because of the linearity inherent to the dual utility model, our identification results are easily

extended to the case of multiplicatively separable auction-level heterogeneity.

Let vti denote the valuation of bidder i in auction t. Assume that vti = ξtv
0
ti where ξt is a

strictly positive scalar random variable drawn from a distribution Fξ (·) and v0
ti is drawn from

a distribution F0 (·). The realization of ξt is commonly known to all bidders at the time of

the auction. We assume that F0 (·) satisfies the properties of F (·) in Section 2 with support

[v, v̄] for v > 0. We further assume that ξt has bounded support and that (ξt, v
0
t1, . . . v

0
tI) are

mutually independent. We now show that the equilibrium bidding strategy in this game is

multiplicatively separable in ξt.

Proposition 3. In auction t with reserve price rt, the equilibrium bidding strategy for bidder

i with v0
ti ≥ ξ−1

t rt ≡ r0
t is given by ξtβ0 (v0

ti; r
0
t ) where

β0

(
v0
ti; r

0
t

)
= v0

ti −

∫ v0ti
r0t
g
(
F I−1

0 (s)
)
ds

g
(
F I−1

0 (v0
ti)
) .

v0
ti can be viewed as the “homogenous” component of bidder i’s valuation (i.e, i’s valu-

ation if ξt = 1) and b0
ti = ξ−1

t bti as the corresponding “homogenized” bid. We let Q0 (·|I)

denote the distribution of homogenized bids. Given Proposition 3, Fξ (·) and Q0 (·|I) are

separately identified up to location following standard arguments (Krasnokutskaya, 2011).

Given Q0 (·|I) and exogenous variation in I, identification of [F0, g] follows immediately
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from the argument in Section 3.2. Importantly, we do not require that ξt is observed by the

econometrician. Hence, our results encompass both observed and unobserved heterogeneity.

In contrast to many of our results, Proposition 3 lacks a parallel in the case of the EU

model. In the EU model, the equilibrium bidding function is generally not multiplicatively

separable in ξt apart from the case of CRRA utility (Grundl and Zhu, 2019). This feature

of the dual utility model follows from the linearity of payoffs evident in (3) and allows us to

address auction-level unobserved heterogeneity for a greater range of bidder preferences.

4 Estimation

This section proposes a fully non-parametric estimation framework for the auction model

with dual risk averse bidders developed in Section 2. We begin with the case in which

there is no auction-level heterogeneity in order to emphasize the essential features of our ap-

proach, before incorporating auction-level heterogeneity. We also propose a semi-parametric

estimator that may be better suited to samples of moderate size.

Throughout, we assume that the econometrician observes all bids (bt1, . . . , btI1) from T1

first price auctions with exactly I1 bidders and all bids (bt1, . . . , btI2) from T2 first price

auctions with exactly I2 bidders, for 2 ≤ I1 < I2.11 When allowing for auction-level hetero-

geneity, we let Xt denote a vector of observable auction covariates.

4.1 Non-parametric estimation

We first propose a fully non-parametric sieve extremum estimator for g (·). Our estimator is

based on an explicit characterization of the mapping between the distortion function g (·) and

the spacings between bid quantile functions in auctions with different participation levels.

This mapping is described by the following lemma.
11Our approach is easily adapted to the case in which more than two participation levels are observed.
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Lemma 2. For any α ∈ [0, 1], define ψ (α) ≡ b (α|I2)− b (α|I1). Then:

ψ (α) =
1

µ2 (α)

{
ψ (1)−

∫ 1

α

{
µ′2 (s)

µ2 (s)
· µ1 (α)

µ′1 (α)
− 1

}
µ2 (s) b′ (s|I1) ds

}
(10)

where µk (α) = g
(
αIk−1

)
for k ∈ {1, 2}.

As the sample grows large, the data directly reveals the true bid quantile functions

b (·|I1) and b (·|I2). The relation in (10) allows us to construct a pseudo-true bid distribution

Q̃ (·|I2, g̃) for the I2 sample given the true I1 sample bid quantile function b (·|I1) and a

candidate distortion function g̃ (·). Following Bierens and Song (2012), a sieve estimator for

g (·) can be obtained by minimizing the difference between the characteristic functions of

the true I2 sample distribution function Q (·|I2) and the pseudo-true analogue Q̃ (·|I2, g̃). In

particular, we consider the following the population criterion function:

C (g̃) :=
1

2κ

∫ κ

−κ
|φI2 (t)− ϕI2 (t; g̃)|2 dt (11)

where φI2 (·) and ϕI2 (·; g) are the characteristic functions associated withQ (·|I2) and Q̃ (·|I2, g̃),

respectively, and κ > 0 is a tuning parameter described in further detail below. As is well

known, distributions of bounded random variables are completely determined by their char-

acteristic functions in an open neighborhood (−κ, κ). By construction, Q (·|I2) = Q̃ (·|I2, g)

and therefore C (g̃) = 0 if and only if g̃ coincides with the true distortion g.

Let T index the sample size and let {kT} be a sequence of positive integers such that

kT → ∞. An estimate of g (·) can be obtained by minimizing the empirical counterpart of

(11) over a sieve space GkT that contains the true distortion function g (·) as kT →∞:

ĝ (·) ∈ arg min
g̃∈GkT

Ĉ (g̃) (12)

To construct Ĉ (g̃), we replace φI2 (·) in (11) with the empirical characteristic function of the

observed bids in the I2 sample and ϕI2 (t; g̃) with the empirical characteristic function of a
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parallel sample of simulated bids. The latter sample is constructed by simulating bids from

b̂ (·|I1) + ψ̂ (·; g̃) where b̂ (·|I1) is the empirical quantile function of the I1 sample and ψ̂ (·; g̃)

is the empirical analogue of (10) given g̃. In practice, a sieve space of strictly increasing

cumulative distribution functions can be constructed from the I-splines (Meyer, 2008) or

from suitably scaled Legendre polynomials (Bierens, 2008).12

We note that if there is no auction-level unobserved heterogeneity, this approach allows

g (·) to be estimated without explicit recovery of the underlying value distribution F (·).

Moreover, it is possible to test for risk aversion (or risk-seeking) by testing whether g (·) is

convex (concave); this can be accomplished with a nonparametric test of convexity (concav-

ity) such as the projection-based test in Fang and Seo (2021).13

4.1.1 Auction-level heterogeneity

We consider two approaches to incorporating multiplicatively separable auction-level hetero-

geneity during estimation. The first corresponds to the well-known parametric bid homoge-

nization procedure of Haile et al. (2003). The second relies on deconvolution.

Parametric bid homogenization Suppose that ξt = Γ (Xt; θ) for a known parametric

function Γ (·). Given that bti = ξtb
0
ti with ξt and b0

ti strictly positive, we can write:

log bti = log Γ (Xt; θ) + log b0
it

= log Γ (Xt; θ) + E
[
log b0

it|It
]

+
(
log b0

it − E
[
log b0

it|It
])

where It denotes the number of bidders in auction t. As observed by Haile et al. (2003),

E [log b0
it − E [log b0

it|It]] = 0 and hence the parameter vector θ can be estimated by nonlinear

least squares. In the case that ξt = exp (X ′tθ) the parameter vector θ can be estimated by
12See Chen (2007) for a comprehensive survey on sieve estimation.
13A potential limitation of the test in Fang and Seo (2021) is the lack of size control in finite samples.

Breunig and Chen (2024) propose an alternative test in the context of nonparametric instrumental variables
regression which features a data-driven choice of sieve dimension to control size.
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ordinary least squares (OLS). Having obtained an estimate θ̂, the distribution of homogenized

log bids can be estimated by the distribution of log bti− log Γ
(
Xt; θ̂

)
. Estimation of g (·) and

F0 (·) then proceeds as above. This procedure is simple to implement and may be practically

effective in applications with little unobserved auction-level heterogeneity.

Non-parametric bid homogenization When unobserved auction-level heterogeneity is

present and/or when the relationship between Xt and ξt is not known, a different approach is

needed. We combine the deconvolution procedure of Cho et al. (2024) with certain features

of the sieve maximum likelihood procedure in Grundl and Zhu (2019).

Cho et al. (2024) show that Fξ (·) and Q0 (·|I) can be estimated by minimizing the

empirical analogue of the following population criterion function:

CI

(
F̃ξ, Q̃0 (·|I)

)
:=

1

4κ2

∫ κ

−κ

∫ κ

−κ

∣∣∣φI(1,2) (t)− ϕI(1,2)

(
t; F̃ξ, Q̃0 (·|I)

)∣∣∣2 dt (13)

where φI(1,2) (t) denotes the joint characteristic function of the first and second highest bids in

auctions with exactly I bidders and ϕI(1,2) (t) denotes the pseudo-true analogue of this object

given the approximation
(
F̃ξ, Q̃0 (·|I)

)
. The empirical analogue to (13) is constructed by

replacing φI(1,2) and ϕ
I
(1,2) with the empirical joint characteristic functions of observed bids and

simulated bids, respectively. Building on this insight, we construct a simple pooled-sample

criterion function in which Q̃0 (·|I2) is replaced with its pseudo-true counterpart Q̃0 (·|I2, g̃):

C
(
F̃ξ, Q̃0 (·|I1) , g̃

)
= w1 · CI1

(
F̃ξ, Q̃0 (·|I1)

)
+ w2 · CI2

(
F̃ξ, Q̃0 (·|I2, g̃)

)
(14)

where w1 and w2 are arbitrary positive weights.14 The distributions Fξ and Q0 (·|I1) are then

estimated jointly with the distortion g by minimizing the empirical analogue of (14).15

14In Sections 5 and 6, we set w1 and w2 equal to the sizes of the I1 and I2 samples, respectively. An
alternative approach is to weight each criterion equally.

15Note that (14) implicitly assumes that the distribution of auction-level heterogeneity Fξ is the same in
the I1 and I2 samples. If endogenous entry is a concern, one can instead specify separate distributions of
auction-level heterogeneity F 1

ξ and F 2
ξ for the I1 and I2 samples (as in Grundl and Zhu, 2019).
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In comparison to sieve maximum likelihood estimators such as that of Compiani et al.

(2020) or Grundl and Zhu (2019), a key advantage of this approach is that the empirical

analogue of (14) can be calculated in closed form, avoiding the need to integrate over the

sieve representation of Fξ (·) during estimation. Similar to Grundl and Zhu (2019), however,

we emphasize that (14) is a one-step estimator. A one step procedure enables us to ensure

that the estimated homogenous bid distributions are jointly rationalized by some dual utility

model, and hence that a valid distortion function is recovered.

4.2 Semi-parametric estimation

In our application, we have access to a relatively small sample of auctions. For this reason we

favor a semi-parametric approach in which g (·) is parameterized while F (·) is approximated

with a flexible polynomial basis. This is analogous to the common practice of estimating

CARA or CRRA models in the expected utility literature (Campo et al., 2011).

In the risk management literature, prominent functional forms for the distortion function

include the power distortion, the so-called Wang distortion (Wang, 2000), and expected

shortfall (i.e., Conditional Value at Risk). Each is characterized by a single parameter. The

Wang distortion is g (x) = Φ (Φ−1 (x)− λ) where Φ (·) is the Normal cdf and λ is a scalar

quantifying risk aversion. The power distortion function is g (x) = xγ with γ ≥ 0. For the

latter,(10) simplifies to an especially tractable relation:

ψ (α; γ) =

{
I2 − I1

I1 − 1

}
b (α|I1)− γ (I2 − 1) ·

{
I2 − I1

I1 − 1

}
·
∫ 1

0

b (αu|I1) · (u)γ(I2−1)−1 · du (15)

In practice we focus on the power distortion mainly due to the relative simplicity of (15):

Q̃0 (·|I2, g̃) is readily constructed from this expression given a polynomial approximation to

b (·|I1). Analogous (but less convenient) expressions can be obtained from (10) for the Wang

distortion and other families.

Despite the simplification afforded by the deconvolution procedure from Cho et al. (2024)
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and the power distortion function above, estimation presents a challenging non-linear op-

timization problem. In our empirical application, we therefore additionally parameterize

the distribution of auction-level heterogeneity Fξ (·). Specifically, we assume that ξt =

exp {X ′tβ + σuUt} where Ut is drawn from a t distribution with five degrees of freedom. The

moderately heavy tails of this distribution appear to be useful in rationalizing the timber

sales data.

5 Numerical exercises

In this section we explore the performance of the semi-parametric estimator introduced

in Section 4.2. The primary goal of this section is to aid interpretation of the estimates

presented in Section 6, which are obtained with the same procedure.

We consider the following simulation design. Motivated by the data, we suppose the sam-

ple consists of exactly T1 = 150 auctions with I1 = 2 bidders and exactly T2 = 150 auctions

with I2 = 3 bidders. Auction level heterogeneity takes the form ξt = exp {X ′tβ + σuUt} where

σu = 0.05 and Ut is drawn from a t distribution with five degrees of freedom. There is a single

auction covariate Xt drawn from a Normal distribution with mean 0 and standard deviation

0.5. Bidders’ homogenized valuations are drawn from a χ2 distribution with four degrees of

freedom truncated between 1 and e2.25 ≈ 9.5.16 Finally, we assume the data is generated in

auctions where bidders are equipped with the power distortion function g (x) = xγ.

We aim to show that our proposed estimator can reliably detect departures from risk neu-

trality. We separately analyze auctions with distortion parameter γ ∈ {0.75, 1.00, 1.25}, cor-

responding to moderate risk-seeking preferences, risk neutrality, and moderate risk-aversion.

Consider a binary lottery to win $1000 or lose $0 with equal probability. An agent having

γ = 1.0 values the lottery at $500. An agent having γ = 1.25 is risk averse and values the

lottery at $420; an agent having γ = 0.75 is risk-seeking and values the lottery at $595.
16With this parameterization, the log bids are positive and dense near both the upper and lower boundaries

of the support.
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Our estimator minimizes the empirical analogue of (14) after replacing Fξ and g̃ (·) with

their parametric analogues. In practice, we find that the stability of the estimates is improved

by averaging the criterion function over L realizations of the simulated bids:

C
(
Q̃0 (·|I1) , β, σu, γ

)
=
(w1

L

)
·
∑
l≤L

C
(l)
I1

(
Q̃0 (·|I1) , β, σu

)
(16)

+
(w2

L

)
·
∑
l≤L

C
(l)
I2

(
Q̃0 (·|I2, γ) , β, σu

)
(17)

For the results below we use L = 125 when (T1, T2) = (150, 150) and L = 3 when (T1, T2) =

(1500, 1500). For the κ parameter, we choose the largest κ for which the empirical charac-

teristic function of the distribution of the first and second highest log bids in each sample

exceeds a threshold that declines with the number of auctions.

To capture Q̃0 (·|I1), we parameterize the quantiles of the log homogenous bids in the I1

sample as log b0 (α|I1) = w (α)′ θb where w (α) is an I-spline basis with five knots. Restricting

the spline coefficients θb to be non-negative ensures that b0 (·|I1) is increasing. In order to

be consistent with a dual utility model, b0 (·|I1) must not increase too slowly. To this end,

our final estimates enforce that the following inequality is satisfied at each α ∈ [0, 1]:

1

2
log b′0 (α|I1) ≥ log

(
α

I − 1

)
− log γ (18)

Although this inequality rarely binds in our numerical experiments, we find that imposing

it usefully focuses the search space to exclude spurious local minima.

Given the possibility of multiple equilibria, point estimates are obtained with the fol-

lowing heuristic. First, we obtain a preliminary estimate of θ1 ≡ (β, σu, θb) in the sample

of auctions with I2 bidders using the procedure of Cho et al. (2024).17 Second, we obtain

a preliminary estimate of γ with a one-dimensional search over (16) given θ1. Finally, we

minimize (16) subject to (18) taking the preliminary estimates as a starting point.
17We also include an intercept term in Xt during estimation.
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Table 1: Monte Carlo Results: Key Parameters

γ = 0.75 β = 1.00 σu = 0.05

Sample Size Median IQR Median IQR Median IQR

Tk = 150 0.867 (0.762, 1.002) 1.007 (0.972, 1.030) 0.009 (0.003, 0.024)
Tk = 1500 0.800 (0.739, 0.856) 0.993 (0.983, 1.006) 0.042 (0.016, 0.070)

γ = 1.00 β = 1.00 σu = 0.05

Sample Size Median IQR Median IQR Median IQR

Tk = 150 1.082 (0.907, 1.364) 1.005 (0.958, 1.029) 0.015 (0.004, 0.023)
Tk = 1500 1.041 (0.934, 1.125) 0.997 (0.986, 1.010) 0.044 (0.016, 0.070)

γ = 1.25 β = 1.00 σu = 0.05

Sample Size Median IQR Median IQR Median IQR

Tk = 150 1.370 (1.112, 1.801) 1.007 (0.948, 1.039) 0.014 (0.007, 0.023)
Tk = 1500 1.281 (1.153, 1.407) 1.002 (0.991, 1.011) 0.029 (0.014, 0.049)

Table 1 reports the median and interquartile range of point estimates across 50 simulated

data sets of the key parameters (γ, β, σu). In addition to the results for (T1, T2) = (150, 150),

we present results for larger samples having (T1, T2) = (1500, 1500). As Xt contains only a

single covariate (apart from the intercept), we report only one β coefficient.

As expected, the distribution of point estimates for the distortion parameter γ̂ shifts

upward as γ becomes larger. Moreover, the interquartile ranges are sufficiently narrow to

suggest that we can discriminate between qualitatively different risk attitudes even when the

sample size is modest. However, there appears to be a slight upward bias in these estimates,

which becomes smaller as the sample size grows larger. Correspondingly, the estimates of

σu exhibit a slight downward bias that also becomes smaller as the sample size grows larger.

The estimates of β appear to be correctly centered regardless of sample size.

6 Application

In this section, we estimate a semi-parametric model of dual risk aversion using bidding data

from United States Forest Service (USFS) timber lease sales. Our model allows for multi-
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plicative unobserved auction heterogeneity and a general value distribution, but restricts the

form of the distortion function to the class of power distortion functions.

Data We analyze sealed bid (first price) sales of timber leases. The data are obtained from

Phil Haile’s website. Following Grundl and Zhu (2019), we focus on leases set aside for small

businesses in the USFS’s Southern Region between 1982 and 1990. We restrict the sample

in three ways. First, we keep only those sales for which the offered tract was exclusively

composed of one or more of three regionally dominant timber species (generic hardwood,

generic softwood, and Southern pine). This serves to mitigate auction-level heterogeneity.

For the same reason, we keep only tracts of moderate size and moderate appraised value

per million board feet (mbf) while excluding sales in which outlier bids were submitted.18

Finally, we restrict attention to sales with exactly two or three bidders.19 The final sample

consists of 145 two-bidder and 114 three-bidder sales.

Our choice of sample is motivated in part by the extensive use of the sealed bid mechanism

in the Southern Region during this time. A second consideration is that firms small enough

to participate in set-aside sales, which are restricted to firms with fewer than 500 employees,

may be more risk averse than larger firms.20 Fitting a CRRA model in a semi-parametric

expected utility framework, Grundl and Zhu (2019) find evidence of risk neutrality in this

sample after accounting for unobserved auction heterogeneity.

For each auction, the USFS data records bidder identities, the size of the tract, the

volume of timber and its appraisal value, estimated logging costs, and the contract term,

among other information. Table 2 reports summary statistics for the estimation sample. The

distribution across offered tracts of timber volume, density, and appraisal value is similar in

both the two bidder and three bidder samples, while the distribution of the contract term
18In particular, we retain auctions of tracts encompassing between 1 million and 5 million board feet of

timber with appraised value between $5 and $100 per thousand board feet.
19Because risk aversion has a greater impact on equilibrium bidding strategies when there are fewer bidders,

these auctions are most informative as to bidder preferences.
20This conjecture is made by Grundl and Zhu (2019). Also, Häfner (2023) finds that small firms are more

risk averse than large ones in the context of auctions for tarriff rate quotas of beef imports in Switzerland.

21



Table 2: Bidding Data Summary Statistics

I = 2 I = 3

Mean Std Mean Std

Wining Bid ($/mbf) 85.29 20.79 90.79 21.90
Bid ($/mbf) 82.65 20.61 85.92 21.72
Appraised value ($/mbf) 63.86 20.93 63.04 21.79
Volume (1000 mbf) 2.39 0.98 2.58 0.94
Density (mbf/acre) 5.29 4.41 5.20 4.05
Contract term (months) 26.29 7.28 28.22 8.21

has a slightly greater mean and dispersion in the three bidder sample. Winning bids and

average bids per mbf are higher on average in the three bidder sample, but in each case the

coefficient of variation exceeds 0.20. The data also indicates a reserve price, but we follow

Haile (2001) and others in assuming that this reserve price was too low to bind. This implies

that the observed number of bids corresponds to the number of potential bidders.

6.1 Estimates

We implement the estimator described in Section 5. To reduce the size of the parameter

space, we include only a single covariate inXt: the log of the appraised tract value (defined as

the product of the timber volume and the appraised value per unit). To visually demonstrate

goodness-of-fit and identification, Figure 1 presents a sample of the L simulated log bid

distributions in the fitted model (in light colors) in comparison to the observed log bid

distributions in each sample (in dark colors). Note that b (·|I2) is not directly parameterized;

the extent of horizontal separation between the simulated bid distributions is driven entirely

by γ through (15). Thus, the horizontal distance between the empirical distributions pins

down the dispersion parameter γ.

Table 3 presents the main estimates along with 90% confidence intervals for the point

estimates. To obtain confidence intervals, we implement a simple subsampling scheme. Given

22



Figure 1: Fitted vs. Empirical Log Bid Distributions

the evidence of finite sample bias in Section 5, we shift the subsampling distribution such

that its median corresponds to the reported point estimates.

There are three main findings. First, we do not find strong evidence of unobserved hetero-

geneity. The point estimate σ̂u = 0.009 implies that unobserved auction-level heterogeneity

generally shifts bidder valuations by less than 5%. However, given the evidence of finite

sample bias in Section 5 the true extent of unobserved heterogeneity may be larger. Second,

the estimated coefficient on log appraised value is slightly less than one, as expected given

that this variable is designed to approximate the value of the tract. Finally, we estimate

the distortion parameter as γ̂ = 0.809, which implies that bidders are mildly risk-seeking.

Indeed, the reported 90% confidence interval implies that risk neutrality is rejected at the

5% level. If the point estimate is biased towards zero, as suggested by the exercise in Sec-

tion 5, the true degree of risk-seeking may be greater, and the true distortion function more

concave. The finding of risk-seeking is robust to various adjustments in model parameters,

such as the number of knots in the spline basis and the number of simulation draws L.

This result may be surprising given prior estimates from the timber auction setting

suggestive of bidder risk aversion (Lu and Perrigne, 2008; Campo et al., 2011). We offer

the following interpretation. It is well understood that bidder risk aversion tends to induce
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Table 3: Main Parameter Estimates

Estimate 90% CI

γ 0.809 (0.537, 0.865)
β 0.886 (0.858, 0.915)
σu 0.009 (0.004, 0.010)

“overbidding.” Thus, a finding that bidders are risk-seeking implies that firms “underbid”

relative to risk neutrality. Put differently, firms appear to bid too aggressively (i.e., too

low) given the distribution of bidder valuations in the population. Bidders in timber lease

auctions face risky gains : losing the auction does not entail a direct financial loss. In a highly

influential paper Tversky and Kahneman (1992), conclude that agents are often risk averse

with respect to high probability gains and risk-seeking with respect to low probability gains.

The latter better describes the situation of most potential bidders in a symmetric auction

environment, at least in the case that the number of potential bidders is greater than two.

6.2 Optimal reserves

In Li et al. (2025), we show generally that when bidders are dual risk averse, a risk-neutral

seller prefers a lower reserve price. Conversely, if bidders are risk seeking we would expect a

risk-neutral seller to prefer a larger reserve. To illustrate the significance of our results, we

estimate the optimal reserve price implied by our model in comparison to the optimal reserve

price one would estimate under the (incorrect) assumption of risk neutrality for a seller with

valuation v0 = v. Table 4 reports an unscaled estimate of (homogenized) optimal reserve

price r0 together with the unscaled expected benefit to the seller, defined as expected revenue

when the dual utility model is correctly specified less v0. A seller that fails to account for

buyer’s apparent risk-seeking behavior underestimates the optimal reserve price by about 2%.

In this case, the incorrect reserve price has relatively little impact on the seller’s expected

revenue (less than 1%). In general, however, the effect of misspecification could be more
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severe both in terms of seller revenue and (in the case of risk aversion) efficiency.

Table 4: Optimal Reserves under Misspecification

Optimal Reserve True Expected Benefit
Model Estimate 90% CI Estimate 90% CI

Dual utility 1.217 (1.176, 1.276) 1.230 (1.227, 1.254)
Risk neutral 1.194 (1.138, 1.235) 1.229 (1.225, 1.250)

7 Conclusion

Despite a growing acceptance in empirical industrial organization that firms can in some

cases exhibit behavior consistent with risk aversion, little work has attempted to quantify

such behavior outside the expected utility model. Yaari’s dual utility model offers one

interesting alternative due to its elimination of wealth effects, close relationship to real-

world risk management paradigms, and tractability. Motivated by recent work on mechanism

design with non-expected utility agents, we extend classic identification results for auctions

with risk averse bidders to the dual utility context and propose a fully non-parametric

estimation framework to recover bidder’s probability distortion functions. Our application

to USFS timber sales suggests that firms may in fact exhibit risk-seeking behavior in some

real-world auctions. We interpret this finding in terms of the well-known intuition from

prospect theory that agents are often risk-seeking with respect to low-probability gains.

A Appendix

Proof of Proposition 1 This result is established in Li et al. (2025). We reproduce the

argument here for the reader’s convenience.
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From (4), we have:

d

dvi

{
g
(
F (vi)

I−1
)
· β (vi)

}
=
dg
(
F (vi)

I−1
)

dvi
· vi (19)

Only bidders with valuations exceeding r will bid; hence, β (r) = r in equilibrium. Integrat-

ing both sides of (19) over [r, vi],

∫ vi

r

d

dt

{
g
(
F (t)I−1

)
· β (t)

}
· dt =

∫ vi

r

d

dt

{
g
(
F (t)I−1

)}
· t · dt

Equivalently,

∫ vi

r

d
{
g
(
F (t)I−1

)
· β (t)

}
=

∫ vi

r

td
{
g
(
F (t)I−1

)}

Integrating by parts on the LHS,

g
(
F (t)I−1

)
· β (t)

∣∣∣∣∣
vi

r

= tg
(
F (t)I−1

) ∣∣∣∣∣
vi

r

−
∫ vi

r

g
(
F (t)I−1

)
dt

As β (r) = r, it follows that:

g
(
F (vi)

I−1
)
· β (vi) = vig

(
F (vi)

I−1
)
−
∫ vi

r

g
(
F (t)I−1

)
dt

Therefore:

β (vi) = vi −

∫ vi
r
g
(
F (t)I−1

)
dt

g
(
F (vi)

I−1
)

which is what we wanted to show.
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Proof of Proposition 2 Suppose that [g, F ] rationalizesQ (·|I), whereQ (·|I) is supported

on
[
b, b
]
. Then:

ξg (b) = b+
1

I − 1
· Q (b|I)

q (b|I)
· ψg

(
QI−1 (b|I)

)
is strictly increasing on

[
b, b
]
. Define g̃ (·) such that g̃ (x) = g (x)δ for some δ > 1. Because

g̃′ (x) = δg (x)δ−1 g′ (x), it must be the case that:

ψg̃
(
QI−1 (b|I)

)
=

g (x)δ

x · δg (x)δ−1 g′ (x)

=
1

δ
ψg
(
QI−1 (b|I)

)
But then

ξg̃ (b) =

(
1− 1

δ

)
b+ ξg (b)

Because 1− 1
δ
> 0 while ξg (·) is strictly increasing on

[
b, b
]
, ξg̃ (·) is also strictly increasing

on
[
b, b
]
. Define F̃ (·) =

∫ ξ−1
g̃ (v)

0 dQ (s|I). Then [g̃, F̃ ] rationalizes Q (·|I).

Proof of Lemma 1 Consider:

lim
K→∞

RK (α) = lim
K→∞

(
K−1∏
l=0

b′R (αl|I1)

b′R (αl|I2)

)
z (αK)

= lim
K→∞

(
K−1∏
l=0

b′R (αl|I1)

b′R (αl|I2)

)
· lim
K→∞

z (αK)

Recall that I2 > I1 by assumption and αk = exp

{(
1

I2−1

)(
I1−1
I2−1

)k
logα

}
. Thus, αk → 0+

as k →∞.

We have assumed that limα→0+ z (α) = 0 and hence limK→∞ z (αK) = 0. Hence, it

remains to show that the limit of the first term is finite.
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To this end, we next show that limα→0+
b′R(α|I1)

b′R(α|I2)
is equal to zero. In (5), it is clear that

the equilibrium information rent decreases with I. Hence, b (α|I2) > b (α|I1). From (8), we

have that:

v (α) = b (α|I1) + b′R (α|I1) · z
(
αI1−1

)
v (α) = b (α|I2) + b′R (α|I2) · z

(
αI2−1

)
And therefore:

b′R (α|I1) · z
(
αI1−1

)
> b′R (α|I2) · z

(
αI2−1

)
Clearly, b′R (·|I) and z (·) are positive. Therefore:

b′R (α|I1)

b′R (α|I2)
<
z
(
αI2−1

)
z (αI1−1)

We conclude by showing that the term on the RHS converges to zero as α → 0+. Let

z (0) = 0 and fix a small ε > 0. By the mean value theorem, there exists c ∈ (0, ε) such

that z (ε) − z (0) = z′ (c) ε. Hence, limα→0+
z(αI2−1)
αI2−1 = limc→0+ z

′ (c) and limα→0+
z(αI1−1)
αI1−1 =

limc→0+ z
′ (c). Then:

lim
α→0+

z
(
αI2−1

)
z (αI1−1)

= lim
α→0+

αI2−I1 ·
z
(
αI2−1

)
αI2−1

· αI1−1

z (αI1−1)

= lim
α→0+

αI2−I1

= 0

Then limα→0+
b′R(α|I1)

b′R(α|I2)
is both positive and bounded above by a term that tends towards zero.

28



Proof of Proposition 3 First, consider the analogue of (3) in the game with auction-level

heterogeneity. If vti = ξtv
0
ti, then

U
(
πti|v0

ti, ṽ
0
ti

)
= g

([
F0

(
ṽ0
ti

)]I−1
) [
ξtv

0
ti − β

(
ξtṽ

0
ti

)]
For truthful revelation to be optimal, we must have:

dg
(

[F0 (ṽ0
ti)]

I−1
)

dṽ0
ti

·
[
ξtv

0
ti − β

(
ξtṽ

0
ti

)]
= ξt · g

([
F0

(
ṽ0
ti

)]I−1
)
· β′
(
ξtṽ

0
ti

)
Following the argument in the proof of Proposition 1

d

dṽ0
ti

{
g
([
F0

(
ṽ0
ti

)]I−1
)
· β
(
ξtṽ

0
ti

)}
=
dg
(

[F0 (ṽ0
ti)]

I−1
)

dṽ0
ti

· ξtv0
ti

Integrating from r0
t to v0

ti,

∫ v0ti

r0t

d

dt

{
g
(
F0 (t)I−1

)
· β (ξt · t)

}
· dt = ξt ·

∫ v0ti

r0t

d

dt

{
g
(
F0 (t)I−1

)}
· t · dt

Equivalently,

∫ v0ti

r0t

d
{
g
(
F0 (t)I−1

)
· β (ξt · t)

}
= ξt ·

∫ v0ti

r0t

td
{
g
(
F0 (t)I−1

)}

Integrating by parts on the LHS,

g
(
F0 (t)I−1

)
· β (ξt · t)

∣∣∣∣∣
v0ti

r0t

= ξt · tg
(
F0 (t)I−1

) ∣∣∣∣∣
v0ti

r0t

− ξt ·
∫ v0ti

r0t

g
(
F0 (t)I−1

)
dt

As β (ξt · r0
t ) = ξt · r0

t , it follows that:

g
(
F0

(
v0
ti

)I−1
)
· β
(
ξt · v0

ti

)
= ξt · v0

tig
(
F0

(
v0
ti

)I−1
)
− ξt ·

∫ v0ti

r0t

g
(
F0 (t)I−1

)
dt
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Therefore:

β
(
ξt · v0

ti; ξt · r0
t

)
= ξt · vi − ξt ·

∫ v0ti
r0t
g
(
F0 (t)I−1

)
dt

g
(
F0 (vi)

I−1
)

Finally, define β0 (v0
ti; r

0
t ) = β (v0

ti; r
0
t ).
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