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1 Introduction

Financial transmission rights (FTRs) are an important element of restructured electricity

markets. Operators of restructured electricity markets in the United States (known as inde-

pendent system operators or ISOs) collect congestion revenues of roughly $3B per year, or

about 4% of wholesale electricity costs (Parsons, 2023). FTRs are forward claims on these

revenues. While many FTRs are directly allocated to energy market participants, a large

share are sold in complex auctions in which participants – including financial speculators –

can potentially profit from strategic behavior. A robust empirical literature has established

that purely financial participants consistently earn large trading profits in FTR auctions,

raising concerns that strategic distortions could be significant.1

In this paper, I use simple economic theory to investigate the contribution of unilateral

market power to so-called “auction revenue shortfalls.” Building on recent developments in

the theory of imperfectly competitive financial markets (Rostek and Yoon, 2023), I show

that the market clearing mechanism used in FTR auctions results in significant competitive

pressure even when bidding activity is thinly dispersed across individual FTRs, weakening

bidders’ incentives to shade their bids. The main results suggest that in the context of a

dense, real-world transmission network, rents from unilateral market power could be rela-

tively insignificant, despite apparent market imperfections such as limited participation for

individual FTRs and a lack of explicit reserve prices. Well-documented auction revenue

shortfalls may reflect the intrinsic costs of holding illiquid FTRs rather than insufficient

competition.

In a typical FTR auction, bidders submit downward-sloping demand schedules for quan-

tities of transmission capacity between points (nodes) in the network. After receiving bids,
1Estimates in the literature suggest that financial participants in FTR auctions earn trading profits on

the order of $0.5B per year across all US ISOs. This includes approximately $300M/year in PJM (Leslie,
2021), $50M/year in NYISO (Leslie, 2021), and $55M/year in CAISO (CAISO, 2019). To obtain the $0.5B
dollar figure, I divide the sum of these figures by the average share of congestion revenues in these markets
among the seven ISOs (as reported in Parsons (2023)). FTRs are also referred to as congestion revenue
rights (CRRs) or transmission congestion contracts (TCCs).
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the market operator allocates capacity across “paths” to maximize net revenue, subject to

the constraint that the final allocation of FTRs is simultaneously feasible with respect to the

physical transmission constraints of the network.2 Due to this constraint, which is enforced

to ensure that the market operator remains budget-balanced, the residual supply curves

faced by each bidder depend on the strategic behavior of bidders throughout the network.

Bidders compete for capacity on common transmission elements when competing for dis-

parate FTRs, and the effective level of competition for any individual FTR can be high even

if few bids are submitted on it.

Section 2 captures this intuition in a stylized model of an imperfectly competitive FTR

auction. Because the market clearing mechanism used in the FTR auction generalizes the

familiar uniform price auction, the well-known characterization of price impacts in uniform

price auctions can be adapted to the FTR auction setting. This shows how bidders’ incentives

to exercise unilateral market power depend the structure of the transmission network, which

mediates the strategic interaction of bidders on different paths. In a uniform price auction,

bidders’ price impacts depend on the level of competition and the concavity of rival bidders’

preferences; in the FTR auction, bidders’ price impacts depend on the level of competition

and the concavity of rival bidders’ preferences on all strategically connected FTRs – those

that are related via equilibrium binding constraints – with greater weight given to bidding on

electrically similar FTRs. In real-world FTR auctions, nearly all FTRs will be strategically

connected, suggesting that effective levels of competition are generally high except possibly

in the most peripheral regions of the transmission network.

Section 3 illustrates the implications of the model numerically in the context of the same

six-node test network previously analyzed in Chao et al. (2000) and Deng et al. (2010). In

this network, a “North” region with excess generation is linked to a “South” region with excess

demand, resulting in congestion. Uncertainty over the level of future demand creates uncer-
2I use the term “path” to refer to particular point-to-point FTRs. This terminology is consistent with

the ISOs’ own usage, but should not be confused with the older concept of a “contract path” referring to
transmission rights on specific combinations of flowgates.
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tainty over congestion, and hence FTR payouts. Risk averse speculators compete to purchase

FTRs while accounting for the behavior of bidders throughout the entire transmission net-

work. I compare the standard FTR auction to a benchmark mechanism with uniform price

auctions for individual FTRs, finding that the former results in far more aggressive bidding.

Empirically validating the model is challenging because detailed information on real-

world transmission networks is generally unavailable to researchers. For instance, the key

object governing the extent of cross-path strategic interaction is the power transfer distri-

bution factor (PTDF) matrix, which summarizes the structure of the transmission network.

This matrix cannot be reliably constructed from publicly available information.3 Lack of

information on network constraints and the PTDF matrix precludes the use of structural

methods to recover bidders’ marginal valuations (e.g., Kastl, 2011), as such methods require

complete knowledge of the market clearing procedure to simulate supply elasticities.

Nevertheless, the analysis provides several clear implications for potential market reforms

to address auction revenue shortfalls. If market power rents are small, then auction revenue

shortfalls may primarily reflect concavity in bidders’ preferences (from risk aversion, inven-

tory costs, or other sources). Accordingly, proposed reforms that would decentralize FTR

sales or prohibit bidding on certain types of FTRs could harm competition without address-

ing potentially more fundamental sources of underpricing. I discuss the policy implications

of the analysis in greater detail in the conclusion.

1.1 Related Literature

ISOs accrue congestion revenue due to the use of locational marginal pricing (Schweppe et al.,

1988). Hogan (1992) proposed that market operators issue FTRs funded with congestion

revenue. Doing so enables the market operator to distribute congestion revenue among

market participants in a manner that may help facilitate long-term contracting, among other
3Detailed transmission network information is considered Critical Energy Infrastructure Information by

the US federal government and is subject to strict non-disclosure policies. Consequently, research on large-
scale power systems is typically limited to “synthetic” grids of varying complexity.
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potential benefits. Operators of all seven restructured energy markets in the United States

issue FTRs, typically through a combination of direct allocation and auctions.

As FTR auction markets have matured, a significant empirical literature has docu-

mented that auction prices for FTRs tend to be “underpriced” relative to their ex post

value (Bartholomew et al., 2003; Adamson and Englander, 2005; CAISO, 2016; Olmstead,

2018; Opgrand et al., 2022). Some authors have emphasized the potential for risk premia

to explain underpricing (e.g., Bartholomew et al., 2003; Adamson and Englander, 2005;

Baltadounis et al., 2017), while others have focused on private information (Leslie, 2021) or

cross-market effects (Opgrand et al., 2022). Relative to this literature, my primary contri-

bution is a novel explanation for why unilateral market power specifically may contribute

little to underpricing. Moreover, while one might always question the significance of market

power rents on the grounds that profitable opportunities tend to attract new entrants, the

explanation I offer does not rely on the assertion that entry barriers are low.

Evidence of persistent underpricing has motivated a robust policy debate in recent years,

with some observers asserting that FTR auctions should be eliminated in favor of more

extensive direct allocation (CAISO, 2017; Parsons, 2020; Monitoring Analytics, 2022) and

others arguing that existing auction mechanisms provide important benefits due to the unique

benefits of FTRs for hedging congestion risk (Bushnell et al., 2018; FERC, 2022). My analysis

is broadly consistent with the latter perspective, but provides insights into how specific policy

proposals motivated by the former (such as bidding restrictions) may affect competition.

In order to analytically characterize market power in an FTR auction, I adapt a workhorse

model of supply function competition from the literature on imperfectly competitive finan-

cial markets (Vives, 2008; Malamud and Rostek, 2017; Rostek and Yoon, 2023). While this

approach is effective for the purpose of this paper, the use of supply function equilibria has

long been considered intractable for many applications in nodal power markets (including

FTR markets), leading to the use of Cournot equilibria and related approaches such as con-

jectured supply function equilibria (Day et al., 2002). For instance, Bautista Alderete (2005)
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builds a model of conjectured supply function equilibria in FTR auctions. In comparison to

Bautista Alderete (2005), my primary focus is the microfoundations of market power rather

than computational tractability, making a supply function approach essential. Deng et al.

(2010) also study the implications of simultaneous feasibility constraints for prices in FTR

auctions, but in an environment with perfectly competitive bidding and flat demands.

Imperfect competition in restructured electricity markets has attracted significant atten-

tion both theoretically (e.g., Joskow and Tirole, 2000; Borenstein et al., 2000) and empirically

(e.g., Wolfram, 1999; Borenstein et al., 2002; Hortaçsu and Puller, 2008), but relatively little

work has examined market microstructure in realistic nodal power markets. One notable ex-

ception is Mercadal (2022), who extends of Hortaçsu and Puller (2008)’s empirical bidding

model to the context of nodal power markets with transmission constraints. In compari-

son, I characterize bidders’ residual demand curves analytically, but without simplifying the

transmission network to the same extent as Joskow and Tirole (2000).

More generally, Mercadal (2022) and several other authors have analyzed the role of fi-

nancial participants in electricity markets (e.g., Birge et al., 2018; Jha and Wolak, 2023).

Notably, Ledgerwood and Pfeifenberger (2013) and Lo Prete et al. (2019) discuss the possi-

bility that financial speculators may submit virtual day-ahead bids strategically in order to

influence FTR values. I do not consider this possibility here. However, this and other forms

of potential market manipulation could be relevant to observed auction revenue shortfalls.

2 Market power in FTR auctions

Consider a market operator (ISO) that manages a grid with N nodes linked by M transmis-

sion constraints. There are K = 1
2
N (N − 1) distinct pairs of nodes. Each year, a congestion

price vector ζ ∈ RM and a power transfer vector Q ∈ RK are realized from a distribution F .

There are K distinct FTRs, one for each pair of nodes. 1MW of FTR k is a forward claim

on the difference in realized congestion prices incurred when injecting power at the source
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node srck ∈ N and withdrawing it at the sink node snkk ∈ N .4 5 Equivalently, FTR k is

a forward claim on Z ′kζ, where Z ∈ RK×M is the power transfer distribution factor (PTDF)

matrix described below.

The ISO may directly allocate FTRs to market participants such as load serving entities

(LSEs), sometimes in the form of auction revenue rights (ARRs). After any directly allocated

FTRs Q̃ ∈ RK are funded, the ISO collects a residual congestion revenue
(
Q− Q̃

)′
Zζ. The

FTR auction is a mechanism for allocating this residual congestion revenue.

In a standard FTR auction, bidders submit downward-sloping demand schedules for FTR

capacity. Suppose bidder j submits bids on a subset of FTR paths Kj ⊆ K. Let q−1jk : R→ R

denote j’s inverse demand function for FTR k.6 After receiving all bids, the ISO awards

FTRs in order to maximize the “economic value” of cleared bids (i.e., the willingness-to-pay

expressed by the inverse demands), subject to transmission constraints:

max
{qjk}

∑
j∈J

∑
k∈Kj

∫ qjk

0

q−1jk (s) ds (1)

s.t. PL
m ≤

∑
j∈J

∑
k∈Kj

zkmqjk ≤ PU
m ∀ m ∈M

An allocation of FTRs which satisfies the constraints in (1) is said to be simultaneously

feasible.7 In this expression, PU
m ∈ R denotes the maximum powerflow on transmission

element m and PL
m ∈ R the minimum (i.e., the maximum powerflow in the reverse direction)

after accounting for any directly allocated FTRs. zkm is an element of the PTDF matrix
4The identity of the source and sink nodes is not important as negative FTR capacity (“counterflow”) is

generally permitted.
5Note that I consider FTR obligations only. The holder of an FTR obligation is required to pay the

ISO when realized congestion is negative. Some ISOs also issue FTR options, which do not require such
payments. FTR options are jointly cleared with FTR obligations using a mechanism similar to (1), but with
additional constraints (Hogan, 2013). As such, the cross-path competitive forces identified in this paper
would also be present in a market that included FTR options.

6For the purpose of exposition, I assume that qjk is strictly downward sloping (and that q−1
jk is integrable).

In practice, bids are step functions. As noted above, negative FTR quantities are permitted.
7Simultaneous feasibility is enforced by the ISO in order to sure that congestion revenues are sufficient

to fund FTR payouts. In practice, FTR payouts are often underfunded due to discrepancies between the
network model used in the FTR auction and the network model that is ultimately used in the physical
market (see, e.g., Parsons, 2020).
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introduced above. The PTDF matrix is determined by the physical characteristics of the

network; its entries take values between −1 and 1 depending on the powerflow induced by

injecting and withdrawing 1MW of power at the source and sink nodes of the FTR. Due to

the nature of powerflow, the PTDF matrix is generally dense.8

Lemma 1 establishes a well known fact regarding market clearing in the FTR auction. In

particular, the price of FTR k is a linear combination of the shadow prices associated with

any binding constraints in (1).

Lemma 1. The clearing price for FTR k in (1) is pk = Z ′kξ = Z ′k
(
ξL − ξU

)
, where ξL ≥ 0

and ξU ≥ 0 are the vectors of Lagrange multipliers in (1).

The FTR auction generalizes the familiar uniform price auction. For example, in a

degenerate transmission network with two nodes and a single transmission constraint m

having PL
m = 0, (1) coincides with the auctioneer’s problem in a standard uniform price

auction with a reserve price of zero. In a more complex transmission network, (1) implies

that the ISO’s problem is equivalent to choosing a subset of binding constraints, and then

conducting simultaneous uniform price auctions for capacity on those constraints. This

conceptualization will be useful below. An FTR bid expresses many implicit contingent bids

for constraint-level capacity, and the price of FTR k is the sum of the clearing prices that

must be paid in each “virtual” constraint auction to obtain sufficient network capacity to

inject 1MW of power at srck and withdraw it at snkk.

In the next section, I analyze optimal bidding in the FTR auction. Before doing so, it is

helpful to introduce additional notation. In the solution to (1), let M̃U denote the subset of

constraints that bind “upwards,” M̃L the subset of constraints that bind “downwards,” and

M̃ the union of M̃U and M̃L. By complementary slackness, pk = Z̃ ′kξ̃ where Z̃k and ξ̃ are

the subvectors of Zk and ξ corresponding to M̃ .
8To illustrate, Appendix B constructs a PTDF matrix for a simplified network.

8



2.1 Price impacts under simultaneous feasibility

In a uniform price auction, the market clearing price is the price that exhausts the auction-

eer’s supply of the good (provided that demand exceeds supply at the reserve price). In an

FTR auction, by contrast, the market clearing price is determined by the solution to (1).

Bidders with market power anticipate the effects of their bids on market clearing prices, or

price impacts (Rostek and Yoon, 2023). In this section, I analyze bidders’ price impacts

when market prices are determined according to (1).

For simplicity, suppose that bidders’ participation decisions, preferences, and the dis-

tribution of FTR payouts are common knowledge.9 Furthermore, ζ and Q are taken to be

exogenous— market participants view FTRs as purely financial assets, and do not anticipate

that FTR allocations will affect prices or allocations in the day ahead market. Bidder j’s

expected utility is

uj (qj; p) = vj (qj)− p′jqj (2)

where qj ∈ R|Kj | is the portfolio of FTRs awarded to bidder j, pj is the subvector of prices

for Kj, and vj : R|Kj | → R is a twice-differentiable, concave valuation function having
∂vj

∂qj∂qj
= −Cj for some positive definite matrix Cj. A leading example of a suitable valuation

function is the mean-variance utility function obtained under constant absolute risk aversion

(CARA) preferences, in which Cj corresponds to the covariance matrix of FTR payouts

scaled by a risk aversion parameter.10 In what follows, it will be useful to let Ej denote the

Kj ×K matrix of zeros and ones such that pj = Ejp.

Optimal bidding requires that the gradient of vj with respect to qj must be equal to the

gradient of j’s auction expenditure with respect to qj. In other words, the marginal benefit
9In reality, some bidders may have superior information for forecasting FTR payouts (Leslie, 2021). It

appears that private information can be incorporated into the model by extending prior work on uniform
price auctions (Rostek and Yoon, 2023), at the cost of considerable technical complication.

10Since Cj can differ across bidders, the model incorporates heterogeneous risk aversion in the CARA
framework. In the CARA framework, ex ante congestion exposure (from long-term contracts, for instance)
is captured by shifts in vj that leave the second derivative matrix unchanged.
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to j of each FTR in Kj must be equal to its marginal acquisition cost in the auction. Under

imperfect competition, the latter depends on bidder j’s price impact, which is summarized

by the matrix Λj =
∂pj
∂qj

. In particular,

∂vj (qj)

∂qj
= pj + Λjqj (3)

When Λj = 0, bidder j bids her marginal valuation for each FTR in Kj – j has no incentive

to exercise unilateral market power. For elements of Λjqj that are greater than zero, optimal

bidding exhibits demand reduction – bidder j requests inefficiently few units at each price

level, shifting demand inwards and reducing prices.

In a Bayesian Nash equilibrium (BNE) of the FTR auction game with linear bid schedules,

each bidder j submits an inverse demand function that satisfies (3), and prices are given by

Lemma 1. It is clear from the auctioneer’s problem (1) that bidders on any particular FTR

must account for the strategies of bidders on other FTRs due to simultaneous feasibility.

The dependence induced by simultaneous feasibility varies depending on the equilibrium

configuration of binding constraints and is captured in the price impact matrix Λj.

In order to describe the cross-path strategic interactions induced by simultaneous feasi-

bility, I introduce a notion of connectivity from graph theory.

Definition 1. Fix M̃ ⊆M . Bidders j and j′ are direct competitors under M̃ if there exists

some m ∈ M̃ such that |Zkm| |Zk′m| > 0 for some k ∈ Kj and k′ ∈ Kj′ . Let G denote the

set of components of the undirected graph with vertices for each bidder and edges linking

any two direct competitors. Bidders j and j′ are quasi-competitors under M̃ if they belong

to the same component g ∈ G. FTRs k and k′ are strategically connected under M̃ if there

exist quasi-competitors j and j′ (possibly the same) such that k ∈ Kj and k′ ∈ Kj′ .

Proposition 1 uses this definition to relate bidder j’s price impact Λj to the strategies of

competing bidders. First, some additional remarks are useful. Observe that the set of bidders

J can be partitioned into disjoint sets
{
J1, . . . J|G|

}
, such that all bidders in Jg are quasi-
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competitors. Interaction between quasi-competitors in Jg is mediated through the virtual

constraint auctions associated with M̃g, where
{
M̃1, . . . M̃|G|

}
is an appropriate partition of

the set of binding constraints M̃ . All FTRs k and k′ having |Zkm| > 0 and |Zk′m′| > 0 for m

and m′ contained in some M̃g are strategically connected.

For convenience, I assume that Λj is positive semi-definite for all j.11 Let Z̃g denote

the submatrix of Z̃ containing the columns corresponding to M̃g. The following assumption

ensures that Λj exists.12

Assumption 1. Fix M̃ ⊆ M . There exist positive definite matrices {Ψ1, . . . ,ΨG} and

conformable matrices {Y1, . . . , YJ} such that:

Y ′jΨ
−1
g Yj +

(
Ψ−1g − 2Wj

)
Yj −Wj = 0 ∀ j ∈ Jg, ∀ g ∈ G (4)

and

Ψ−1g =
∑
j∈Jg

(
I + Y ′j

)−1
Wj ∀ g ∈ G (5)

where Wj = Z̃ ′gE
′
jC
−1
j EjZ̃g. Furthermore, Ψ−1g −

(
I + Y ′j

)−1
Wj is invertible for each j.

In a degenerate network with a single FTR and a single binding constraint, Assumption

1 is satisfied whenever there are three or more bidders, mirroring a well-known sufficient con-

dition for the existence of an equilibrium in uniform price auctions with common information

(Rostek and Yoon, 2023). Assumption 1 generalizes this idea to the FTR auction, in which

different bidders may submit bids on different portfolios of FTRs, and some pairs of FTRs

may not be strategically connected. For example, if fewer than three bids are submitted on
11I do not attempt to provide conditions under which price impacts are positive semi-definite; however,

previous work in market microstructure has regarded positive semi-definiteness as the natural generalization
of the standard assumption that scalar price impacts are positive (e.g., Malamud and Rostek, 2017).

12Given the linear structure of payoffs specified above, it may be possible to extend the results in Malamud
and Rostek (2017) to establish uniqueness of the price impact matrix. I leave this for future work.
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an FTR that is not strategically connected to any other FTR under M̃ , then Assumption

1 is violated. In the proof of Proposition 1 below, I show that Yj can be interpreted as the

product of a scaling matrix C−1j EjZ̃g and j’s constraint-level (rather than FTR-level) price

impacts. I discuss the interpretation of Ψg below.

We can now state the main result of the paper:

Proposition 1. Suppose M̃ ⊆ M is the subset of binding transmission constraints in a

BNE of the FTR auction game. Under Assumption 1, the equilibrium price impact of bidder

j ∈ Jg is given by:

Λj = EjZ̃g

(
Ψ−1g −

(
I + Y ′j

)−1
Wj

)−1
Z̃ ′gE

′
j (6)

where Yj is a solution to (4) for some Ψg satisfying (5).

Proofs of Proposition 1 and all other results are provided in Appendix A.

The significance of (6) is to clarify the manner in which bidder j accounts for the relevance

of particular competing bids.13 Specifically, (6) implies that bidder j’s equilibrium bidding

strategy depends on the strategies of all j’s quasi-competitors, but no others. In reality, Z

is dense and bidders tend to submit bids on many FTR paths, suggesting that almost all

FTRs will be strategically connected, and almost all bidders will be quasi-competitors. Ψg

is the matrix equivalent of a harmonic mean of the slopes of the bids in the virtual auctions

for capcity on M̃g. Similarly, the middle term on the right hand side of (6) is the matrix

equivalent of a harmonic mean of the slopes of the virtual bids submitted by j’s quasi-

competitors—in other words, it represents the slope of the residual supply of constraint

capacity. FTR-level price impacts are related to constraint-level residual supply curves

through the PTDF matrix—price impacts are lower when bidding on an FTR with large

magnitude PTDF values concentrated on more competitive constraints.
13For comparison, Malamud and Rostek (2017) consider an environment where EjZ̃g is the identity matrix

and Cj = cjΣ for a known matrix Σ and scalar cj . They show that Λi = cjYjΣ and Yj = βjI for a scalar
βj . In this setting, heterogeneity in Kj and the uncertain rank of Z̃ prevents a simpler expression.
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To more clearly illustrate the unique features of FTR auctions, it is useful to restrict

attention to the special case in which Kj is a singleton Kj = {kj} for each j (henceforth,

“single-path bidding”). Define Z̃kj =
(
EjZ̃g

)′
as the PTDF vector associated with kj. In

this case, individual bidders submit one and only one bid and the matrices Λj and Cj can be

replaced with scalars λj and cj. To demonstrate the implications of Proposition 1, Example

1 considers a simple equilibrium in which a single constraint binds and bidders’ preferences

take a special form that admits an explicit solution for λj.

Example 1. There are J ≥ 3 bidders. Suppose a single constraint m∗ binds in equilibrium

and all bidders are strategically connected, with |G| = 1. Assume that cj = cZ2
kjm∗

for some

constant c > 0. Since
∣∣∣M̃1

∣∣∣ = 1, Ψ−11 and Yj are scalars. Then the mean slope is given by:

Ψ1 =
1

J

(
J − 1

J − 2

)
c

While for each bidder j,

Yj =

(
1

J

(
J − 1

J − 2

))
− 1

2
+

√(
1

J

(
J − 1

J − 2

))2

+
1

4

Proposition 1 implies that λj = cZ2
kjm∗

Yj. Clearly, λj is increasing in the magnitude
∣∣Zkjm∗∣∣

of the shift factor between k and the binding constraint m∗, increasing in the concavity of

preferences c, and decreasing in the number of bidders J .

Inspection of Proposition 1 suggests that an FTR auction produces more competitive

bidding for FTR k than an equivalent uniform price auction. To see this, observe that

uniform price auctions for each FTR could be implemented via (1) by replacing Z with the

identity matrix and PU and PL with fixed volumes of FTR capacity for each path. Holding

fixed participation, such a mechanism eliminates all cross-path competition and can therefore

be expected to produce weakly larger price impacts λUnifj for each j. Although I am unable

to provide a general result, Example 2 shows that price impacts are strictly greater under
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the uniform price auction for the example introduced in Example 1.

Example 2. Consider the setting from Example 1, but now suppose there are Jk ≥ 3 bidders

on each path. In the FTR auction, we have already shown that:

λj = cZ2
kjm∗

( 1

J

(
J − 1

J − 2

))
− 1

2
+

√(
1

J

(
J − 1

J − 2

))2

+
1

4


where J =

∑
k∈K Jk. In a uniform price auction for FTR k, we would instead have:

λUnifj = cZ2
kjm∗

( 1

Jk

(
Jk − 1

Jk − 2

))
− 1

2
+

√(
1

Jk

(
Jk − 1

Jk − 2

))2

+
1

4


Since Jk < J , price impacts are strictly lower in the FTR auction.

Even in the case of single-path bidding, there may be more than one binding constraint for

some component g, such that
∣∣∣M̃g

∣∣∣ > 1 . In this case, Ψ−1g and Yj are matrices of dimension∣∣∣M̃g

∣∣∣ × ∣∣∣M̃g

∣∣∣ for all j ∈ Jg, even though all price impacts are scalar. As the solution to a

matrix quadratic equation, Yj generally lacks a closed form. Given this, it is helpful for the

purpose of deriving comparative statics to consider the following necessary condition for λj:

λj =
2xj − cj +

√
c2j + 4x2j

2

where xj = Z̃ ′kjΨgZ̃kj represents j’s exposure to the mean slope Ψg among bidders in Jg.

From this expression, it is clear that λj is increasing as xj increases (holding cj fixed).

This fact can be used to establish comparative statics for the general single-path bidding

case, summarized in Corollary 1 below. In a typical uniform price auction, price impacts

are declining in the number of bidders. In the FTR auction, the effects of a marginal bidder

are more nuanced. If the set of binding constraints were fixed in advance, then λj would

not only decline in the number of bids on FTR kj but also in the number of bidders on

strategically connected FTRs. In this sense, cross-path strategic interaction tends to reduce

14



market power. In practice, however, the set of binding constraints in (1) can adjust in

response to entry, potentially resulting in local increases in price impacts.

Corollary 1. Consider an auction with single-path bidding. Let J0 = (J1, . . . , JK) de-

note an entry vector, where Jk is the number of bidders having Kj = {k}, and J1 =

(J1, . . . , Jk′ + 1, . . . , JK) the entry vector with an additional path k′ bidder. Let M̃0 and

M̃1 denote the the induced binding constraints under J0 and J1, respectively. Then:

1. λj
(
J1; M̃0

)
− λj

(
J0; M̃0

)
is positive if k′ is strategically connected to kj and zero

otherwise

2. λj
(
J1; M̃1

)
− λj

(
J0; M̃0

)
can be positive or negative

where λj (·; ·) expresses price impact as a function of J and M̃ .

Since one would expect the PTDF matrix Z to be relatively dense in a full-scale power

network, Corollary 1 suggests that bidders in real-world FTR auctions likely face a high level

of effective competition, even if marginal impacts are difficult to sign due to possible adjust-

ments in M̃ . Although I do not attempt to perform a comprehensive empirical validation of

the model in this paper, this prediction is consistent with the stylized fact that bidders in

FTR auctions who face no direct competition frequently make losses.14 Broadly, the model

suggests that the relationship between FTR-level participation and auction revenue shortfalls

will tend to be weak except perhaps in peripheral parts of the network.15

3 Numerical illustration

In this section, I investigate the market design implications of the model in Section 2 by

comparing equilibrium outcomes of a simulated FTR auction to equilibrium outcomes of an

benchmark mechanism in which FTR capacity is sold in parallel uniform price auctions.
14For instance, data from the Midcontinent ISO FTR auction analyzed in O’Keefe (2024) indicates that

roughly half of bids on FTR paths with only a single bidder are loss-making.
15In contrast, Olmstead (2018) finds that auction prices in Ontario are less predictive of FTR payouts

when there are two or fewer bidders on an FTR than when there are three are more.
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Figure 1: Six-Node Test Case
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Wholesale Bids (Normal Scenario)

Node Type Supply Demand
1 Gen 10 + 0.025q −
2 Gen 15 + 0.025q −
3 Load − 37.5− 0.025q
4 Gen 42.5 + 0.0125q −
5 Load − 75− 0.05q
6 Load − 80− 0.05q

I focus on the six-node test case analyzed in Chao et al. (2000) and Deng et al. (2010).

Figure 1 presents a schematic depiction of the network along with node-level supply and

demand bids in the wholesale market expressed as a function of the quantity of power q.

Nodes 1, 2, and 3 constitute a “North” region with excess generation capacity, while nodes

4, 5, and 6 constitute a “South” region with excess demand. The network diagram indicates

the branch capacities (in MW) and admittances (per unit).16 The supply and demand bids

reflect exogenous demand for power in the wholesale market.

Following Deng et al. (2010), I assume that the intercepts of the wholesale inverse de-

mands can be 25% higher or 25% lower with known probability, resulting in uncertainty

over future congestion. Table 1 indicates the assumed probability of each demand scenario

and resulting node-level locational marginal prices (LMPs), which determine FTR payoffs,

along with the net congestion revenue earned by the market operator under each scenario.

Expected congestion revenue is $9,048.86.

The main purpose of this exercise is to compare the FTR auction described in Section

2 with a benchmark mechanism in which the market operator holds parallel uniform price

auctions for each distinct FTR. To implement the latter, the market operator must first
16I do not impose the additional 340MW North-South flowgate constraint discussed in Chao et al. (2000).

Relative to Deng et al. (2010), I divide the slopes of the wholesale bids by two, as this results in a more
complex equilibrium for the standard FTR auction when the flowgate consraint is omitted.
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Table 1: Six-Node Test Case LMPs and Congestion Revenue

Scenario Prob. LMP-1 LMP-2 LMP-3 LMP-4 LMP-5 LMP-6 Revenue

Normal 0.6 23.03 33.55 28.29 46.71 41.45 51.97 $7368.42
Load +25% 0.2 22.92 35.42 36.04 48.96 57.08 65.83 $18203.12
Load −25% 0.2 21.20 28.25 24.73 37.07 33.54 40.59 $4935.90

determine a quantity of FTRs to be sold on each path. To facilitate comparison, I focus on

the allocation in which the quantity of FTRs sold on each path coincides with the quantity

allocated on that path in the equilibrium of the FTR auction game.17

All FTRs are purchased by symmetric, risk averse financial speculators.18 Each speculator

bids on one and only one FTR, and there are Jk = 3 distinct bidders on each FTR path.19

The marginal valuation function is vj (q) = E [πk] q − α
2
q2V ar (πk) where πk is the per-unit

payoff of a path k FTR and α > 0 is a risk preference parameter common to all bidders.

πk is defined as the realized difference between the LMP at the sink node and the LMP at

the source node. I assume α = 0.5 × 10−3. Equilibria are obtained numerically. For the

uniform price auctions, existence and uniqueness are standard given common knowledge of

payoffs and Jk ≥ 3 (Rostek and Yoon, 2023). For the FTR auction, I verify numerically that

an equilibrium exists for one and only one combination of binding constraints, and that the

associated price impacts appear to uniquely satisfy (6).

The first two columns of Table 2 present the market operator’s revenue under each mech-

anism. The standard FTR auction recovers 95.5% of expected congestion revenue, while the

uniform price benchmark recovers only 91.8%. The table decomposes auction revenue short-

falls into risk premia demanded by the bidders and market power rents. Since bidders hold

identical portfolios in either case, risk premia are the same for each mechanism. However,
17In practice this particular allocation would be unknown and hence infeasible; however, the particular

assumption made here does not affect the slope of the resulting bids.
18In a richer environment with both financial speculators and “hedgers” (firms with significant ex ante

congestion exposure and possibly greater risk aversion), the choice of mechanism could have important
implications for the surplus of different groups. I thank an anonymous referee for this insight.

19The main qualitative conclusions should remain unchanged for alternative exogenous specifications of
participation. However, even in the polar case of full participation (Kj = K for each j), one must repeatedly
solve a challenging matrix-valued fixed point problem to find an equilibrium, which represents a significant
increase in computational difficulty over the case of single path bidding.
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Table 2: Auction Results by Selling Mechanism

Standard Pathwise Uniform-
Auction Price Auctions

Expected Value of FTRs 9048.86 9048.86 9048.86
Risk Premia 369.08 369.08 272.59
Market Power Rent 36.34 369.08 132.83
Operator Revenue 8643.44 8310.70 8643.44
Operator Revenue / Expected Value 0.9552 0.9184 0.9552
Participation Model Jk = 3 Jk = 3 See text.

the FTR auction reduces market power rents by 90% as compared with the uniform price

benchmark. In a larger and more realistic network, this effect could be even larger.

The striking difference in market power rents in Table 2 is a direct result of the cross-

path competitive linkages induced by the constraints in (1). In this network, there are

fifteen distinct FTRs. All are strategically connected for the relevant range of parameters.

The first two columns of Table 3 indicate that the price impact λj is uniformly lower for bids

in the FTR auction as compared with bids in the uniform price benchmark. To illustrate

the significance of this difference, the third column indicates the number of bidders that

would be required for the relevant uniform price auction to deliver the same price impact as

the FTR auction (relaxing the natural integer constraint on the number of bidders). This

shows that, on average, bidders in the FTR auction bid as competitively as if they faced

11.8 directly competing bidders in a uniform price auction.

The last statistic describes the degree of competitiveness among bidders in terms of the

slope of the equilibrium bid functions. Because new entry dilutes risk, fewer new bidders

would be required to eliminate price differences across mechanisms. The fourth column shows

the number of bidders needed to replicate the FTR auction clearing prices, accounting for

the dilution of risk. Strictly more bidders are required on every path, and 31.5% more

participation is needed overall. The final column of Table 2 reports aggregate outcomes

with this new entry level. Total revenues are the same as in the standard FTR auction by

construction, but a greater share of the total shortfall is attributable to market power rents.
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For any level of participation, the difference in market power rents across mechanisms

crucially on the concavity of bidders’ valuations, which is determined by bidders’ risk pref-

erence α and the variance of FTR payouts. In the limit as α → 0 or as V ar (πk) → 0 for

all k, bidders’ marginal valuations converge towards the expected value of each FTR, and

the difference in market power rents collapses to zero. (For either mechanism, there are no

auction shortfalls.) Conversely, when α is larger or the variance of FTR payouts is greater,

bidders’ demand greater risk premia, flattening the residual supply curves that bidders face

and thereby enabling more aggressive demand reduction. This effect is relatively stronger

under the uniform price mechanism, resulting in relatively greater market power rents.

These findings suggest that for meaningful levels of concavity in bidders’ preferences the

FTR auction delivers lower market power rents for the same level of participation on the

one hand, and for the same level of auction shortfalls on the other. It is natural to question

the sensitivity of these findings to the maintained participation assumptions. Given the

seeming complexity of bidders’ potential participation strategies and the likely multiplicity

of equilibria, I leave the development of a model of FTR auctions with endogenous entry

to future work. Like any other analysis of imperfect competition, the results are predicated

on the existence of entry barriers. With sufficient competition, there is no difference across

mechanisms. As Jk → ∞ for all k, bidders’ marginal valuations converge towards the

expected value of each FTR, and both risk premia and market power rents fall to zero.

4 Conclusion

Persistent underpricing in FTR auctions raises important questions for the design of restruc-

tured electricity markets. In this paper, I investigate the contribution of unilateral market

power to underpricing. I use a simple theoretical model to demonstrate that the market

clearing mechanism used in FTR auctions can facilitate high levels of cross-path compe-

tition, which can significantly dampen bidders’ incentives to exercise market power. The
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Table 3: Price Impacts by Path

Price Impact λj Jk to Equate:
FTR Path-wise Standard Price Impact Prices

1-2 0.00155 0.00058 4.67 3.57
1-3 0.00573 0.00075 9.64 3.99
1-4 0.00607 0.00070 10.62 4.02
1-5 0.02662 0.00111 26.09 4.19
1-6 0.02826 0.00111 27.37 4.20
2-3 0.00261 0.00060 6.36 3.80
2-4 0.00159 0.00053 4.98 3.63
2-5 0.01715 0.00095 19.99 4.16
2-6 0.01739 0.00096 20.06 4.16
3-4 0.00404 0.00067 8.00 3.91
3-5 0.00785 0.00098 9.99 4.00
3-6 0.00978 0.00098 11.96 4.05
4-5 0.01365 0.00100 15.66 4.12
4-6 0.01184 0.00102 13.66 4.09
5-6 0.00097 0.00060 3.63 3.29

numerical model presented in Section 3 suggests that in an FTR auction, market power

rents may contribute relatively little to auction revenue shortfalls in comparison to other

sources of concavity in FTR bidders’ valuations (such as risk premia or inventory costs).

Today, most ISOs directly allocate some FTRs to LSEs, while selling only “residual”

FTRs in the FTR auction. Some observers have suggested eliminating the FTR auction

and instead directly allocating 100% of FTR capacity to LSEs. Individual LSEs could then

choose to sell their FTRs in a decentralized fashion. The analysis suggests that by breaking

the strategic linkages across auctions, decentralization could enable speculative buyers to

extract significant market power rents at current participation levels. Anticipating this,

LSEs would be incentivized to hold larger FTR portfolios, which could be inefficient.

Another potential policy response to persistent auction revenue shortfalls is to elimi-

nate bidding on FTRs that are perceived to be more vulnerable to strategic bidding. This

approach was taken by the California ISO (CAISO) in 2018, which banned bidding on so-

called “non-deliverable” FTRs. The framework in this paper suggests that this policy could

20



have increased market power rents on the remaining “deliverable” FTRs, since bids on non-

deliverable FTR paths exert competitive pressure elsewhere. However, the model presented

here sets aside many details relevant to the CAISO’s intervention. I leave an empirical

evaluation of the CAISO’s reforms for future work.

Apart from these specific policies, my findings reinforce the importance of separating the

question of market power in FTR auctions from broader consideration of the efficiency of

ISOs’ congestion revenue management practices. Even if trading profits earned by financial

speculators do not reflect the exercise of market power, the central question remains whether

the social benefits from FTR auctions exceed observed shortfalls. Conversely, the existence

of trading profits (even those earned via market power) does not in itself imply that proposed

alternatives would be welfare-improving.
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A Model details and proofs

Proof of Lemma 1

The Lagrangian of the auctioneer’s problem is:

L =
∑
j∈J

∑
k∈Kj

∫ qkj

0

q−1kj (s) ds−
∑
m∈M

ξUm

KU
m −

∑
j∈J

∑
k∈Kj

zkmqkj

−∑
m∈M

ξLm

∑
j∈J

∑
k∈Kj

zkmqkj −KL
m


In this expression, the first order condition with respect to qkj is:

q−1kj (qkj) +
∑
m∈M

zkm
(
ξUm − ξLm

)
= 0

This implies that bidder j is awarded units of FTR k for which she bids strictly greater than∑
m∈M zkm

(
ξLm − ξUm

)
. Thus, pk =

∑
m∈M zkm

(
ξLm − ξUm

)
is analogous to the stop out price

of a uniform price auction for FTR k. Since bids assumed to be strictly downward sloping,

rationing never occurs, and pk is the market clearing price.

Proof of Proposition 1

Fix g ∈ G and j ∈ Jg. From Lemma 1, we know that

pj = EjZ̃ξ̃

where ξ̃ is the subvector of constraint shadow prices corresponding to M̃ . Since j ∈ Jg, the

columns of EjZ̃ corresponding to constraints not contained in M̃g are identically zero. We

can instead write:

pj = EjZ̃g ξ̃g
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where ξ̃g and Z̃g are, respectively, the subvector and submatrix of ξ̃ and Z̃ corresponding to

M̃g.

Due to Lemma 1, ξ̃g must be a solution to the system of equations defined by
∑

j∈Jg
∑

k∈Kj
zkmqjk (pj) =

P̃g,m for each m ∈ M̃g, where P̃g,m = PU
m if m ∈ M̃U

g and P̃g,m = PL
m if m ∈ M̃L

g . In matrix

form,

Z̃ ′g

(
E ′jqj +

∑
j′ 6=j

E ′j′qj′ (pj′)

)
= P̃g

Differentiating with respect to qj gives:

Z̃ ′g

(
E ′j +

∑
j′ 6=j

E ′j′
∂qj′

∂pj′

∂pj′

∂qj

)
= 0

Re-arranging and substituting pj′ = Ej′Z̃g ξ̃g gives:

(∑
j′ 6=j

Z̃ ′gE
′
j′
∂qj′

∂pj′
Ej′Z̃g

∂ξ̃g
∂qj

)
= −Z̃ ′gE ′j (7)

Since Cj is positive definite and Λj is assumed to be positive semi-definite, Cj+Λj is positive

definite and hence invertible. By the implicit function theorem, it follows that:

∂qj′

∂pj′
= − (Cj′ + Λj′)

−1

Define Λξ
j =

∂
˜
ξg
∂qj

, and note that Λj =
∂pj
∂qj

= EjZ̃gΛ
ξ
j . Hence,

∂qj′

∂pj′
= −

(
Cj′ + Ej′Z̃gΛ

ξ
j′

)−1
By the Woodbury matrix identity,

∂qj′

∂pj′
= −C−1j′ + C−1j′ Ej′Z̃g

(
I + Λξ

j′C
−1
j′ Ej′Z̃g

)−1
Λξ
j′C
−1
j′
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Pre- and post-multiplying by Z̃ ′gE ′j′ and Ej′Z̃g gives:

Z̃ ′gE
′
j′
∂qj′

∂pj′
Ej′Z̃g = −Wj′ (I + Yj′)

−1

where Wj = Z̃ ′gE
′
jC
−1
j EjZ̃g and Yj = Λξ

jC
−1
j EjZ̃g, and we make use of the fact that I −

(I + Yj′)
−1 Yj = (I + Yj′)

−1. The left hand side matrix and Wj are both positive definite

and thus symmetric, therefore:

Z̃ ′gE
′
j′
∂qj′

∂pj′
Ej′Z̃g = −

(
I + Y ′j′

)−1
Wj′

Returning to (7), it follows that:

(∑
j′ 6=j

(
I + Y ′j′

)−1
Wj′

)
Λξ
j = Z̃ ′gE

′
j

Post-multiplying by C−1j EjZ̃g gives:

(
Ψ−1g −

(
I + Y ′j

)−1
Wj

)
Yj = Wj

where Ψ−1g =
∑

j∈Jg

(
I + Y ′j

)−1′
Wj. Some algebra shows that:

Y ′jΨ
−1
g Yj +

(
Ψ−1g − 2Wj

)
Yj −Wj = 0 (8)

and:

Ψg =

∑
j∈Jg

(I + Yj)
−1′Wj

−1 (9)

where we make use of the fact that WjYj must be symmetric (although in general Yj will

not be). Under Assumption 1, conformable matrices {Ψ1, . . . ,ΨG} and {Y1, . . . , YJ} solving

(8) for all j ∈ Jg and (9) for all g ∈ G are guaranteed to exist. Assuming this is the case, it
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follows from (7) that:

Λj = EjZ̃g

(
Ψ−1g −

(
I + Y ′j

)−1
Wj

)−1
Z̃ ′gE

′
j

where we make use of the invertibility stipulation in Assumption 1.

Proof of Corollary 1

For 1., the case in which k′ and kj are not strategically connected is immediate. For the case

in which k′ and kj are strategically connected, monotonicity of λj in xj implies that it will

suffice to show that x1j < x0j . To this end, define the function Fg : S|M̃
0
g |

+ × Z+ → S|M̃
0
g |

+

Fg (Ψ; J) = Ψ− hg (Ψ; J)

where hg : S|M̃
0
g |

+ × Z+ → S|M̃
0
g |

+ is given by:

hg (Ψ; J) =

∑
j∈Jg


2Z̃ ′kjΨZ̃kj + cj +

√
c2j + 4

(
Z̃ ′kjΨZ̃kj

)2
2


−1

Z̃kj Z̃
′
kj


−1

Inspection of hg reveals two useful properties, summarized in the Lemma below.

Lemma 2. [Monotonicity of hg] hg satisfies the following properties:

1. hg (Ψ; Jk′ + 1) < hg (Ψ; Jk′) in the positive semidefinite (psd) order

2. hg (Ψ′; Jk′) < hg (Ψ; Jk′) in the psd order if Ψ′ > Ψ in the psd order

By construction, Fg (Ψ0; J0) = 0 and Fg (Ψ1; J1) = 0. Observe that:

Fg
(
Ψ1; J1

)
=
{
Fg
(
Ψ1, J1

)
− Fg

(
Ψ1, J0

)}
+
{
Fg
(
Ψ1, J0

)
− Fg

(
Ψ0, J0

)}
+ Fg

(
Ψ0, J0

)
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and therefore:

0 =
{
Fg
(
Ψ1, J1

)
− Fg

(
Ψ1, J0

)}
+
{
Fg
(
Ψ1, J0

)
− Fg

(
Ψ0, J0

)}
The first property in Lemma 2 implies that Fg (Ψ1; J1) − Fg (Ψ1; J0) is positive definite.

Then Fg (Ψ1, J0)− Fg (Ψ0, J0) must be negative definite. The second property in Lemma 2

implies that Fg (Ψ, Jk′) is strictly increasing in the psd order as Ψ increases in the psd order;

hence, Ψ1 < Ψ0 in the psd order. It is easy to see that x1j < x0j if Ψ1 < Ψ0 in the psd order.

For 2., consider the following example. Figure 2 presents a simple three-node network

derived from the example in Section 3. As in Section 3, suppose that the intercepts of the

inverse demands can be 25% higher or 25% lower, with the same probabilities as those given

in Table 1. Suppose there are three FTR paths: one linking nodes 1 and 2, another linking

nodes 1 and 3, and a third linking nodes 2 and 3. In this network, the price impact λ12

generally decreases in J12 except when new entry induces a change in the set of equilibrium

binding constraints, in which case the price impact λ12 increases.

To illustrate this pattern, Figure 3 plots the price impacts on each path as a function

of the number of bidders J12, holding fixed the numbers of bidders J13 = 2. The blue solid

and red dashed lines in each panel correspond to J23 = 5 and J23 = 6, respectively. In the

unshaded regions, only the branch between 1 and 2 binds in equilibrium. In the shaded

regions, both of the branches between 1 and 2 and between 1 and 3 bind in equilibrium.

The lines in the leftmost panel indicate that price impacts on 1-2 can increase when further

entry on 1-2 induces a change in M̃ ; otherwise, price impacts are decreasing in entry. The

lines in the center and right panels indicate that price impacts on paths 1-3 and 2-3 typically

decrease but can also increase as a result of entry on path 1-2.

29



Figure 2: Three-Node Test Case
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Figure 3: Price Impacts vs. FTR 1-3 Entry
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B Additional Material

Construction of the PTDF Matrix Consider a three-node network (N = 3) having

three branches (M = 3; in order: 1-2, 1-3, 2-3) with arbitrary branch susceptances φ =

(−φ12,−φ13,−φ23). As an illustration, I construct the PTDF matrix following Liu et al.

(2009). First, let T = B̃′A′H where H is a diagonal matrix of the branch impedences, A is

the node-arc incidence matrix, and B̃ is a block-diagonal matrix that also depends on the

branch impedences. T is a matrix of generation shift factors for each node. To construct B̃,

we must designate a reference node. Letting Node 1 be the reference node, we have:

H =


φ−112 0 0

0 φ−113 0

0 0 φ−123

 A =


1 −1 0

1 0 −1

0 1 −1

 B̃ =β−1


0 0 0

0 φ−113 + φ−123 φ−123

0 φ−123 φ−112 + φ−123


where β = φ−112 φ

−1
13 + φ−112 φ

−1
23 + φ−113 φ

−1
23 is a scaling factor. In general, Z = AFTRT where

AFTR is the FTR design matrix. If there is one FTR for each branch (1-2, 1-3, 2-3), then

the FTR design matrix coincides with the node-arc matrix. Substitution gives:

Z = β−1


φ−112

(
φ−113 + φ−123

)
φ−113 φ

−1
23 −φ−113 φ

−1
23

φ−112 φ
−1
23 φ−113

(
φ−112 + φ−123

)
φ−112 φ

−1
23

−φ−112 φ
−1
13 φ−112 φ

−1
13 φ−123

(
φ−112 + φ−113

)


In the special case that φ12 = φ13 = φ23, Z simplifies to:

Z =


2/3 1/3 −1/3

1/3 2/3 1/3

−1/3 1/3 2/3


As this example suggests, the PTDF matrix is generally dense, and the shift factors as-

sociated with any particular FTR depend on physical characteristics of transmission lines

31



throughout the network as well as the overall structure of the network.
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