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Abstract

Financial transmission rights (FTRs) are an important class of contracts for man-
aging congestion in decentralized energy markets. This paper explores how mar-
ket operators’ contract design choices affect the efficiency of FTR allocation. With
shorter contract tenors, generators and electricity customers (“load”) can obtain better
hedging portfolios for anticipated congestion risk. However, speculator participation
in FTR auctions responds endogenously to contract design. Speculators can extract
greater rents when markets are thinner, leading to welfare losses for load firms (who
are residual claimants on auction revenues). In order to understand the significance
of this tradeoff I build and estimate a stylized empirical model of the FTR allocation
mechanism used by Midcontinent ISO (MISO), a large decentralized energy market.
Relative to a counterfactual with longer contracts, MISO’s current contract design re-
duces load firm welfare losses from congestion risk by $2.4M per year, or about 1% of
total welfare at firms’ estimated risk preferences. However, overall load firm welfare
falls by $40-60M due to reduced auction proceeds, highlighting the value of careful
contract design.

1 Introduction

In a decentralized electricity market, scarce transmission resources are allocated by an
impartial market operator on the basis of supply and demand. While this market de-
sign is believed to bring substantial benefits to consumers, it also introduces a number
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Table 1: FTR Contract Granularities

Market Period Time-of-Use Mkt Size ($M)

SPP 1-, 2-, 4-month Peak/Off-Peak 1,334
ERCOT 1-month Peak WE/WD, Off-Peak 1,289
MISO 3-month Peak/Off-Peak 1,240
PJM 1-year Peak/Off-Peak 1,014
NYISO 6-month, 1-year 24 Hr 317
CAISO 3-month Peak/Off-Peak 250
ISO-NE 1-year Peak/Off-Peak 40

of inefficiencies. For example, uncertainty regarding the availability of physical trans-
mission capacity increases the cost of contracting between wholesale producers and their
customers, disincentivizing investment in generation assets. FTR markets are intended
to alleviate this friction by enabling firms to hedge against congestion risk, among other
purposes.

Market operators in the United States (known as independent service organizations
or ISOs), currently issue FTR contracts with a net value of about $5B each year. While the
mechanisms used to allocate FTRs are broadly similar across ISOs, the characteristics of a
standard FTR contract vary widely.

Formally, an FTR is a forward contract on network congestion between two nodes
during a specified time period. One particularly important dimension of an FTR is its
granularity (or tenor) at the time of allocation. In some markets, standard contracts are as
short as a month, and only encompass narrowly defined times of use (e.g., peak hours on
weekends). In other markets, contracts are much longer, and may not be subdivided by
time of use. Table 1 summarizes FTR contract granularity for each of the seven US ISOs.1

FTR contract granularity affects generators, retailers, and other physical transmission
customers on two key margins. When contracts are shorter, the set of feasible FTR port-
folios becomes larger, enabling load firms to obtain improved hedging portfolios. On the
other hand, excessively short (or long) contracts can potentially degrade market thickness
in the ISO’s FTR auction, leading to soft prices. Load firms are the residual claimants on
auction revenues, and therefore suffer losses from uncompetitive auctions.

This paper considers how an ISO should design FTR contracts to balance the tradeoff
between hedging flexibility and auction revenues, which has relevance for project finance
(Risanger and Mays, 2021). Section 2 presents a simple model in which load firms have
delivery obligations that vary seasonally. The ISO permits load firms to directly claim

1The geographic footprints of the seven ISOs (including MISO) are depicted in Figure 1.
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FTRs. Potential speculators enter and compete to purchase “residual” FTRs in an auction.
Load firms are the residual claimants on auction revenues. Depending on expected auc-
tion prices, risk averse load firms may prefer longer FTR contracts even though shorter,
more granular contracts enable more precise hedging against congestion risk. The extent
of competition in the FTR auction can depend on factors such as the risk profile of residual
FTR capacity and the fixed costs of bidding.

In order to quantify the tradeoff between auction revenue and hedging flexibility, I
study the Midcontinent ISO (MISO) FTR market in detail. Currently, MISO allocates 3-
month FTR contracts by default, with separate contracts for peak and off-peak hours. I
build and estimate a simple structural model to understand whether MISO could obtain
a better outcome in terms of welfare by adopting an annual contract design instead. No-
tably, the model features a stylized but tractable model of speculator participation and
bidding that distinguishes this paper from prior work. The framework that I develop is
potentially useful for investigating other market design questions in FTR markets, which
have received limited attention in economics.

The key economic primitives required to assess this question include market partici-
pants’ congestion forecasts, risk preferences, participation costs, and bidding strategies. I
combine a stylized model of participation and bidding with FTR auction price data and
realized congestion prices to recover these primitives. Notably, I recover market par-
ticipants’ congestion beliefs from variation in observed FTR auction prices, avoiding the
need to simulate congestion (which would otherwise be challenging without access to the
underlying network model, which is not publicly available). To do so I exploit the struc-
tural linkage between FTR auction prices on related FTR paths to significantly reduce the
dimension of the inference problem.

I find that auction revenues from speculators are 20-30% lower under the status quo 3-
month contract design than under an annual contract design, depending on speculators’
participation costs. Load firms’ risk exposure is reduced significantly, but not sufficiently
for 3-month contracts to be welfare improving at firms’ estimated risk preferences. How-
ever, the risk preference estimates are sensitive to the estimated riskiness of congestion
prices. For reasonable alternative risk preferences, the net welfare effect is reversed. The
implication that neither contract design is unambiguously superior may help to rational-
ize the continued use of long-tenored standard contracts in heavily-traded FTR markets
such as PJM and NYISO, as well as the lack of convergence to a standard contract granu-
larity across ISOs more generally.

The remainder of this section provides additional background on financial transmis-
sion rights and clarifies the contribution of this paper. Section 2 develops a simple the-
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Figure 1: US ISO Footprints

oretical model to illustrate the tradeoffs associated with contract granularity. Section 3
describes the MISO FTR market in detail. Sections 4 and 5 discuss the empirical model
and estimation strategy, respectively. Sections 6 and 7 present the model estimates and
the counterfactual analysis.

1.1 Related Literature

A significant body of empirical work analyzes patterns in FTR auction prices and at-
tempts to draw conclusions about the efficiency of FTR auctions. For example, Siddiqui
et al. (2003) find evidence of high risk premia in the NYISO TCC market. Olmstead (2018)
finds evidence of informational inefficiency in the Ontario FTR market. Leslie (2021) stud-
ies the role of speculators in the NYISO TCC market. Another strand of literature attempts
to estimate reduced form models of FTR prices using conventional asset pricing frame-
works such as CAPM (Baltadounis et al., 2017) or options pricing (Patino-Echeverri and
Morel, 2006). None of these analyses derive a structural model of FTR prices, and thus
none can easily be extended to predict prices or other market outcomes under alternative
product designs or other policy interventions.

Another body of research formulates and in some cases provides numerical simula-
tions of equilibrium models of energy markets that include FTRs. Alderete (2005) consid-
ers FTR auction environments with market power, as well as environments with multiple
auction rounds and multiple contract periods, among other issues. de Maere d’ Aertrycke
and Smeers (2013) consider a model in which risk averse agents can purchase FTRs in an
illiquid financial market. Risanger and Mays (2021) link the availability and tenor of
FTRs to project finance. Unlike these papers, I do not explicitly model the ISO’s economic
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dispatch problem or market participants strategic behavior in domains outside the FTR
allocation. Although the model I present lacks these features, it has a unique and easily
computed equilibrium even when the number of nodes is large, making estimation and
counterfactual simulation much more straightforward.

Several authors have considered the problem of portfolio construction in FTR markets
from the perspective of a single agent (either a load firm or a speculator). Some examples
include Acre et al. (2004b), Acre et al. (2004a), Li and Shahidehpour (2005), Babayigit
et al. (2010), Apostolopoulou et al. (2013), and Zheng et al. (2022). This literature does not
address the question of how FTR prices arise in equilibrium, the central concern of this
paper.

Recent work in economics evaluates the role of financial participants in deregulated
electricity markets more broadly. Jha and Wolak (2019) find evidence that financial traders
improve price discovery and market efficiency in CAISO. In contrast, Birge et al. (2018)
find conflicting evidence in MISO. In their study, financial traders manipulate day ahead
energy prices in order to influence the value of their FTR positions. This type of behavior
falls outside the scope of my analysis.2 Mercadal (2022) finds that financial traders in
MISO reduced generator’s market power.

Separately, many authors in empirical industrial organization have implicitly or ex-
plicitly considered the role of contract design in auction markets. Some examples include:
Bajari and Lewis (2014) who consider the role of deadlines and penalties in procurement
auctions; Allen et al. (2022) who analyze the role of contract tenor in Treasury auctions;
and Bhattacharya et al. (2022) who study royalties in oil lease auctions. Hendricks and
Porter (2015) provide a broader discussion of contract design in auctions.

2 Contract Tenor and Market Thickness

Congestion costs are an inherent feature of the design of decentralized electricity mar-
kets. Due to the scarcity of transmission capacity, marginal demand for electricity at any
particular node in the network cannot typically be satisfied with generation from the next
lowest cost producer. When a firm withdraws electricity at a particular node, it pays a
locational marginal price, which is the price at which local demand for electricity crosses
local supply of electricity given the current availability of transmission capacity.

As a consequence of this design, arms-length and vertically integrated supply commit-
ments from generation assets to electricity customers are subject to significant congestion
risk, since the price received by the generator at the “source” node generally differs from

2As discussed below, I make the simplifying assumption that FTR payouts are exogenous.
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the price paid by customers at the “sink” node. When congestion is severe, this disloca-
tion in prices can be significant ($100 per MWh or more).

As a result of this market design, market operators accrue large congestion revenue
surpluses. Market operators (which are non-profit entities) define and allocate property
rights known as financial transmission rights both to distribute this surplus and to enable
firms to hedge against congestion risk. An FTR is a financial contract that pays the accu-
mulated hourly difference in locational prices between two nodes in the network during
a specified period of time. With an appropriate portfolio of FTR contracts, a load firm
can perfectly hedge against congestion risk on contractually obligated deliveries that are
known in advance. In this way, FTRs enable firms to engage in long term contracting as if
they owned exclusive physical transmission rights.3

FTRs can be allocated directly to firms or sold in an auction. In practice, US ISOs use
a combination of direct allocation and auctions. The total quantity of FTRs is intended to
correspond to the physical capacity of the system, which ensures that the market operator
remains budged balanced (Hogan, 1992). To achieve this objective, the ISO may need
to allocate more FTR capacity than load firms wish to claim. Financial speculators are
allowed to purchase FTRs in the auction both to absorb this residual supply, and, more
generally, to ensure that auction prices are competitive and informative.

The following example highlights a key tradeoff faced by market operators when de-
signing and allocating FTRs.

2.1 Illustration

Consider two nodes in an electricity grid, G and L, linked by a single transmission line
with capacity K:

Suppose firm g has a long term contract to inject electricity at G and withdraw elec-
tricity at L. The contract volume is eS < K in the summer and eW < K in the winter.

The electricity grid has many nodes and many transmission lines. The market op-
erator determines the price of electricity at each node to balance supply and demand
throughout the network. Individual nodes and lines are small in comparison to the net-
work as a whole. Thus, from a local perspective, the market operator sets an exogenous

3Unlike in a system of physical transmission rights, however, firms have no incentive or ability to pre-
vent network capacity from being fully utilized in the exercise of market power (Joskow and Tirole, 2000).
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unit price ρG for each unit of capacity injected at G and an exogenous unit price ρL for
each unit of capacity withdrawn at L. When g uses the grid to transmit electricity from
G to L, she pays the the market operator the difference in prices π ≡ ρL − ρG , which
is known as a congestion price. π is stochastic and varies depending on the season. The
joint distribution of summer and winter congestion costs is (πS, πW) ∼ F. According
to her planned usage, g anticipates paying the market operator congestion fees totaling
πSeS + πWeW at year end.

For simplicity, suppose that each season lasts exactly one hour, and the transmission
line between G and L is always fully utilized. Then, over the course of the year, the market
operator will collect congestion revenues equal to R = K (πS + πW), where R is a random
variable. A financial transmission right (FTR) is a tradable property right to a pre-defined
share of future congestion revenues R.

Financial transmission rights are inherently divisible and can always be divided in the
secondary market. However, the market operator can choose a standard contract gran-
ularity for the initial allocation of FTRs. In practice, there are two relevant possibilities:
either the market operator can define annual FTRs, which are rights to shares of R, or he
can define separate seasonal FTRs, which are separate right to summer congestion rev-
enues RS = KπS and winter congestion revenues RW = KπW .

Assuming g is the only firm with a long term contract on the transmission line, the
market operator will allow g to claim as many FTRs as she would like (up to the amount
of transmission capacity K) and then sell any “residual” FTRs on g’s behalf in the FTR
auction. FTRs are valuable to g because they enable g to hedge against her underlying
exposure to congestion. Of course, auction revenues are also valuable to g.

Under annual FTR design, g chooses an amount of FTRs q∗ ∈ [0, K] to maximize her
expected utility from congestion fees and FTR auction revenues. At the optimum, g’s
expected utility is:

ug = E

[
U

(
πS (eS − q∗) + πW (eW − q∗)︸ ︷︷ ︸

net congestion

+ p∗ (K− q∗)︸ ︷︷ ︸
auc rev

)]

Cleary, for any q∗ ∈ (0, min {eS, eW}), g has less exposure to net congestion than she
would absent FTRs. If g is risk averse, then this reduction in risk exposure is valuable.
However, unless eS = eW , g cannot perfectly hedge against congestion risk. On the other
hand, under the seasonal FTR design, perfect hedging is feasible. In this case, g can choose
separate amounts q∗S ∈ [0, K] and q∗W ∈ [0, K] for each season. At the optimum, expected
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utility is:

ug = E

[
U

(
πS (eS − q∗S) + πW (eW − q∗W)︸ ︷︷ ︸

net congestion

+ p∗S (K− q∗S) + p∗W (K− q∗W)︸ ︷︷ ︸
auc rev

)]

Net congestion can be further reduced in this case. If g is more risk averse, additional
flexibility under the seasonal auction design is more valuable. If q∗S = e∗S and q∗W = e∗W ,
then g is perfectly hedged against congestion. However, in this case, auction revenues
are different from auction revenues under annual FTRs, due to both quantity and price
effects. If auction revenues are sufficiently weak in comparison to the reduction in net
congestion afforded by the seasonal FTR design, g’s expected utility may be greater under
the annual contract design.

Whether g prefers the annual or seasonal auction design ultimately depends on g’s
preference for risk and the efficiency of the FTR auction. If auctions are sufficiently com-
petitive that prices are close to the expected value of congestion, a narrower contract
design is generally preferable. In reality, however, speculators can earn rents when par-
ticipation is costly, speculators are risk averse, or other market frictions are present. If
rents are smaller when contracts are coarser, then coarser contracts may be preferable.

In the remainder of the paper, I quantify this tradeoff for the MISO FTR allocation in
particular.

3 The MISO FTR Allocation

This section describes key elements of the MISO FTR allocation mechanism. The discus-
sion motivates several modeling choices in the empirical model I develop in Section 4.

MISO allocates new FTRs once each year. The allocation occurs in two distinct stages:
the Auction Revenue Rights (“ARR”) allocation which occurs in March, and the FTR Auc-
tion which occurs in April and May. When the process is concluded, FTRs for the subse-
quent June-May period are fully allocated to market participants and speculators. Resale
is possible, but resale volumes are small and FTRs are generally considered to be illiquid
after the initial allocation.4

During the ARR allocation, load firms are awarded ARRs on the basis of historical net-
work usage, self-reported long term contracting obligations, and MISO’s forecast of net-

4Resale can occur via negotiated sale or through monthly re-allocation auctions organized by MISO.
Transaction volumes in the re-allocation auctions are significantly smaller than transaction volumes in the
annual auctions.
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Figure 2: Mean Allocations per Contract Period

Firm
Type

Financial1

# Firms

Load2

# Paths
 per Firm
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MW per Path
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Total MW
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16.9

9.4

59.1

2681.0

905.2

work demand. An ARR is a convertible warrant to purchase a given quantity of FTRs on a
specific FTR path at a price of zero. Exercising this warrant is known as “self-scheduling.”
Self-scheduling occurs during the first round of the FTR auction, simultaneous with bid-
ding. If an ARR holder does not self-schedule an ARR, the ARR converts to a claim on
auction revenues on the associated FTR path.5 Any auction revenues that are not directly
owed to the holder of an unconverted ARR are divided between firms pro rata on the
basis of unconverted ARR capacity. In this way, the ARR mechanism accomplishes two
purposes: it facilitates the direct allocation of FTRs to load firms, and determines how
auction revenues are to be divided between the load firms ex post.

The FTR auction occurs in three consecutive rounds, held about two weeks apart.
Each round consists of eight simultaneous auction events, one for each available 3-month
contract season (summer, fall, winter, spring) and time of use (peak vs. off-peak hours).
MISO attempts to allocate roughly one third of anticipated network capacity in each auc-
tion round. In each round, firms simultaneously submit bids (and offers) on all FTR paths
that they wish to bid on. Bids take the form of price-contingent demand or supply sched-
ules with discrete bid points (as in Kastl (2011)). All paths are cleared simultaneously
subject to a “simultaneous feasibility” constraint. This constraint ensures that net FTR
capacity corresponds to the (anticipated) physical transmission capacity of the network
less any self-scheduled FTRs. If the underlying network model were completely accu-
rate, this strategy would guarantee that congestion revenues are sufficient to cover FTR
payouts (Hogan, 1992).6

The volume of FTRs available on any particular path is not fixed in advance, but is
determined endogenously: a bid on one FTR competes with bids on all other FTRs that
imply powerflow on overlapping transmission elements at the auction clearing prices.
Many combinations of path-to-path FTRs can exhaust network transmission capacity, and

5Thus, a risk neutral ARR holder prefers to self-schedule whenever the expected auction price is below
the expected cost of congestion.

6In practice, the market operator does not have perfect foresight with respect to the availability of trans-
mission resources during the coming year (for example, due to unplanned outages), so there are typically
shortfalls or surpluses.
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firms can explicitly bid for “counterflow” (i.e., negative capacity).7

I analyze the 2016, 2017, and 2018 annual allocations. For the typical contract period
(season-time of use) in this period there were roughly 75 active load firms and 50 active
“financial” (i.e., non-load) firms.8 Figure 3 shows the gross volume of FTRs obtained
annually by firm type (financial vs. load) and allocation mechanism (self-schedule vs.
auction). In aggregate, load firms and financial firms each obtained similar gross volumes
of FTR capacity. About half of load firm FTRs are obtained via self-scheduling, while half
are obtained in the auction. Financial firms are not allocated any ARRs. Thus, financial
firms hold about two thirds of the gross volume of FTRs sold in the auction, but only half
of all FTR capacity.

Figure 2 reports summary statistics on the average FTR allocation per contract period
by firm type. Load firms tend to obtain large volumes of a few FTRs, while financial
firms tend to obtain small volumes of many FTRs. Load firms obtain FTRs for less than
20 source-sink pairs on average, while financial firms obtain FTRs for about 500 source-
sink pairs on average. Load firms obtain more than 50 MW on average, financial firms
typically obtain less than 10 MW on any given path. One plausible explanation for these
patterns is that financial firms tend to accumulate diversified portfolios (suggesting risk
aversion), while risk averse load firms hedge against congestion risk on the specific mar-
ket paths that correspond to their long term contract obligations.

FTRs are expensive and highly risky. Industry accounts suggest that the fixed costs
of bidding are large (e.g., Acre (2013)). To accurately price FTRs, firms must develop and
maintain complex models of powerflow, which requires significant investments in data,
software, and engineering know-how. Consistent with steep fixed costs, financial firms
that bid in one of the eight contract periods in a given year nearly always bids in all eight
contract periods. In other words, partial entry is relatively uncommon. Since congestion
varies considerably across contract periods (for example, being greater in peak periods
than off-peak periods), the cost of participating in an additional contract-period auction
appears to be relatively low.

I do not directly observe firms’ delivery obligations. However, as is well known, de-
mand for electricity is highly seasonal. Figure 4 presents the average day-ahead forecast
load for MISO by region and month. In most regions, peak load is about 10% above the

7One implication is that FTR auctions are likely more competitive than is sometimes appreciated. For
instance, the fact that most FTR paths receive a small number of bids does not necessarily imply that the
scope for market power is large, since a bid on any one path potentially competes against bids on many
other paths.

8I define a “load” firm as any market participant that submitted a self-scheduling request at some point
during the analysis period.
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Figure 3: Annual Gross Volume by Firm Type
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annual average in the summer, and 10% below the annual average in the fall and spring.
If contract obligations follow a similar pattern, then having seasonal FTRs could signifi-
cantly reduce firms’ exposure to congestion risk.

4 Model

This section develops a model of MISO’s FTR auction that enables me to evaluate alterna-
tive contract designs. The key elements of the model are agents’ beliefs about congestion,
load firms’ behavior, and speculators’ participation and bidding strategies in the auction
market. I discuss these elements in detail before introducing additional assumptions re-
quired to estimate the model. In the interest of clarity I ignore the distinction between
between peak and off-peak hours in this section.

Agents & Timing The agents in the model are the market operator MISO, a collection
of load firms G, and a fringe of potential speculators. Timing is as follows:

1. MISO chooses a contract granularity and then allocates ARRs to load firms

2. Load firms exercise self-scheduling claims, which are then made public.

3. Speculators decide whether to enter the FTR auction. Entry decisions are made
public.

4. Load firms and speculators who have chosen to enter and submit bids and offers
in the FTR auction to purchase any residual FTR capacity supplied by the market
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Figure 4: MISO Peak Load by Region & Month, 2013-2019
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This timing assumption abstracts from two key sources of uncertainty that market partic-
ipants encounter in reality. First, load firms exercise self-scheduling claims against ARRs
during the first round of the auction, simultaneous with bidding, not prior to bidding. I
adopt this alternative timing assumption to reduce the complexity of the model. Without
this assumption, speculator entry decisions would be made on the basis of expectations
about load firms’ likely self-scheduling claims.9 Second, speculators may face consider-
able uncertainty over other speculators’ participation strategies (as in Leslie (2021)) and
can therefore face uncertainty over the number of competing bidders. As I will explain
below, there is no such uncertainty in the simplified model I develop.

Congestion Forecasts There are N nodes in the network and K possible FTR paths. Let
ηs denote the N× 1 vector of realized nodal congestion prices in season s. Then the K× 1

9In the data, it appears that self-scheduling strategies are often easy to predict: many load firms always
self schedule 100% of allocated ARRs, while other load firms never self-schedule, suggesting that uncer-
tainty may be small in practice, and hence that little is lost by abstracting from it.
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vector of FTR payouts is:

πs =Aηs (1)

where A is a K× N contract design matrix.10 Agents have common information and correct
beliefs about ηs. In particular, all agents know the true model of congestion prices, which
is given by:

ηs = χs + Lvs + εs (2)

where νs ∼ N (0, Ψs) is a P-vector of factors with P � N, L is a known unitary N × P
matrix of factor loadings, and εs ∼ N

(
0, σ2

e I
)

is an error term. Realizations of νs and εs

are independent across seasons.11 Under these assumptions, the distribution of seasonal
FTR payouts is given by:

πs ∼ N (µs, Σs) (3)

where µs = Aχs and Σs = A
{

LΨsL′ + σ2
e I
}

A′.
The simplifying assumption that agents have no private information about FTR pay-

outs is restrictive. In practice speculators have heterogenous forecasting skill, and some
firms may have private knowledge of future congestion events (such as scheduled out-
ages). Leslie (2021) finds evidence that FTRs purchased in later auction rounds are typ-
ically less profitable than those purchased in earlier auction rounds, consistent with an
affiliated private values model where information rents are dissipated across auction
rounds. If all private information is revealed in the first round, then this assumption
is innocuous for the second and third auction rounds (and, thus, for the bulk of volume).

Load Firms In each season s, load firm g ∈ G is endowed with a vector of contractual
delivery obligations eg,s ∈ RKg on a subset of FTR paths Kg ⊆ K. g has CARA utility
with risk aversion parameter λg. Thus, if g had no FTRs, g’s expected utility (before
post-auction revenue transfers) would be:

− µ′g,seg,s −
λg

2
e′g,sΣs,geg,s (4)

10Formally, row k satisfies Ak· = esrck − esnkk
where en is a standard basis vector, snkk ∈ {1, . . . , N} is the

sink node associated with FTR path k, and srck ∈ {1, . . . , N} is the corresponding source node.
11This assumption is fairly mild since (unanticipated) congestion events typically do not last more than

a few hours or days.
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where µg,s is the subvector of µs and Σs,g is the submatrix of Σs corresponding to Kg.
As discussed above, g can obtain FTRs in one of two ways under the status quo: g can
obtain a limited quantity of FTRs at no cost by self-scheduling her ARR allocation, or g
can purchase (or sell) FTRs in the FTR auction.

I assume that g can only obtain FTRs on Kg.12 If g obtains FTR portfolio q ∈ RKg

through self-scheduling and auction purchases, g’s expected utility before transfers is:

W0
g,s (q) ≡µ′g,s

(
q− eg,s

)
− λg

2
(
q− eg,s

)′ Σs,g
(
q− eg,s

)
(5)

In practice, I assume that self-scheduling decisions are made non-strategically. More
generally, I do not model the ARR allocation process (which determines the self-scheduling
limits).

Speculators All speculators are symmetric. Similar to load firms, speculators have
CARA preferences with risk aversion parameter λ f . Unlike load firms, speculators have
no intrinsic exposure to congestion and always bid on all K available FTRs. If speculator
f obtains FTR portfolio q ∈ RK through auction purchases, f ’s expected utility before
transfers (i.e., the net price of the FTRs) is:

W0
f ,s (q) ≡µ′sq−

λ f

2
q′Σs (6)

A speculator who chooses to participate in the auction also incurs a participation cost
Cs, which encompasses the fixed and contract period-specific variable costs of speculating
on FTRs.

The benefit of modeling speculators in this manner is that obtaining counterfactual
prices and allocations is straightforward, as demonstrated below. However, it is clearly
unrealistic, since speculators evidently do not bid on all possible FTRs and do not obtain
identical portfolios.

FTR Auction Equilibrium of the FTR auction depends on load firms’ self-scheduling
decisions and speculators’ entry decisions. For the moment, suppose that load firm self-

12This restriction is intended exclude the possibility that a load firm’s optimal bidding strategy involves
speculating on many irrelevant FTR paths. This type of behavior would be inconsistent with observed
purchase patterns discussed above. Molzahn and Singletary (2011) report that some load firms (including
Wisconsin utilities) are explicitly prohibited from speculating on FTRs. However, this restriction may nev-
ertheless exclude certain reasonable forms of hedging. An important issue that I do not address is whether
ARR allocations have become less tightly linked over time to contracting due to frictions in the ARR regis-
tration process.
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scheduling decisions and speculator entry decisions have already been made: each load
firm g is endowed with a vector of self-scheduled FTRs qss

g,s, while Ms speculators have
sunk the participation cost Cs.

The FTR auction is conducted in three rounds In round r, g may submit a demand
schedule qg,s,r : RKg → RKg indicating a quantity of each FTR desired as a function of the
clearing price subvector ps,g,r.13 g’s optimal demand schedule in round r will account for
any FTRs obtained by self-scheduling or purchased in previous rounds. In particular, g’s
optimal demand schedule in round r is the solution to:

max
qg,s,r

W0
g,s

(
qss

g,s + ∑
i≤r

qg,s,i − eg,s

)
− p′g,s,rqg,s,r (7)

Like the load firms, speculators account for purchases in prior rounds, which shift
the marginal risk of additional FTRs. In auction round r, speculator f submits a demand
schedule q f ,s,r : RK → RK indicating a quantity of each FTR demanded as a function of the
clearing price vector ps,r. Hence, the round r optimal demand schedule for a speculator f
solves:

max
q f ,s,r

W0
f ,s

(
∑
i≤r

q f ,s,i

)
− p′s,rq f ,s,r (8)

To abstract from the complexity induced by the auction clearing mechanism, I make
a number of simplifying assumptions. First, I assume that all load firms and speculators
are price-takers. Second, conditional on participation, speculators participate in all eight
auction events (four seasons and two times-of-use). In other words, speculators cannot
selectively or partially participate in the auction.

The strategic environment for bidders is significantly more complicated than in previ-
ously studied multiunit auction environments. Due to the simultaneous feasibility con-
straint, a bid on one FTR path can compete for scarce transmission resources (e.g., lines or
transformer capacity) with bids on hundreds or thousands of seemingly unrelated FTR
paths. The price-taking assumption is necessary since it does not appear to be feasible to
account of market power explicitly in this presence of this constraint, at least within the
standard paradigm for analyzing multiunit auction environments in industrial organiza-
tion (e.g., Hortacsu and Puller, 2008; Kastl, 2011).14 A related issue that falls outside the

13This relaxes the actual auction procedure, in order to simplify the characterization of equilibrium. In
reality, g submits a collection of path-specific demand functions qg,s,r,k : R → R, one for each path k.
Moreover, I do not account for the additional strategic complications that result from discrete bidding.

14For one thing, the MISO market model is not publicly available. Even if it were, constructing the
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scope of the current model relates to the complexity of information spillovers: because of
the nature of powerflow, information revealed by bidding in one part of the network can
be informative regarding the value of FTRs in distant areas.

Let Fs,r (ps,r) denote the supply of FTRs sold to speculators in round r (i.e., supply
net of demand from load when the equilibrium price vector is ps,r). By symmetry, each
speculator obtains an identical FTR portfolio in each round. Thus, q f ,s,r = M−1

s Fs,r (ps,r),
and the vector of clearing prices is:

ps,r = µs − αsΣs

{
∑
i≤r

Fs,i (ps,i)

}
(9)

where αs = λ f /Ms is a risk premia scalar. Note that risk premia in the current round
depend on the risk that speculators have accumulated from purchases in prior rounds.

(9) summarizes important information about the role of risk premia in the auction
market. If speculators were risk neutral, then prices ps,r would coincide with the expected
level of congestion µs. Similarly, if infinitely many speculators entered the market, prices
ps,r would be competed down to µs. The combination of risk aversion and imperfect
competition generates risk premia. The sign of the price distortion on any particular
path can be positive or negative, depending on the direction of flow as well as on the
correlations across paths, with the scale of distortions depending on the risk aversion
parameter and the entry rate.

Speculator Entry Under certain simplifying assumptions, it can be shown that the risk
premia scalar is a simple function of the aggregate market risk borne by speculators:

αs = cλ,s

 ∑
s∈Sy

∑
i≤R

F
′
s,i (ps,i)ΣsFs,i (ps,i)

−1/2

(10)

where cλ,s =
√

6λ f Cs is an entry friction parameter and the term in parentheses is the ag-
gregate market risk. In particular, this result depends on the assumption that speculators
enter up to a zero profits condition, capacity is divided equally across rounds, and integer
constraints on entry are ignored. See Appendix C for a derivation.

residual supply curve on a given path when the full set of bids is known can only be done by repeatedly
solving MISO’s market clearing problem (a high dimensional mixed integer programming problem, given
the constraints). In order to simulate firms beliefs regarding residual supply, it would be necessary to do
this many times. Another potential challenge relates to the inexistence of equilibria in standard multiunit
auctions when there are few bidders: FTR paths attract fewer than three bidders.
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(10) further clarifies the nature of risk premia in the auction market: the magnitude of
price distortions (which, again, may be positive or negative on any given path) scales with
the degree of risk aversion, the magnitude of entry frictions, and the aggregate risk borne
by speculators. This interpretation relies in large part on the absence of private informa-
tion in the model: speculators perfectly anticipate the supply of FTRs to be purchased,
and the number of competing speculators in equilibrium.

Post-Auction Transfers After the auction, g receives a portion of the net auction rev-
enues collected by MISO which I denote by revg,s. Accounting for this transfer, g’s welfare
(i.e., interim expected utility) after the auction is given by:

Wg,s = W0
g,s

(
qss

g,s + qauc
g,s

)
− ∑

i≤R
p′g,s,iq

auc
g,s,i + revg,s (11)

where qauc
g,s = ∑i≤R qauc

g,s,i. By extension, the aggregate welfare of all load firms is:

Ws = ∑
g∈G

W0
g,s

(
qss

g,s + qauc
g,s

)
+ ∑

i≤R
p′s,iFs,i (12)

where Fs,r ∈ RK denotes the vector of net FTR sales to speculators in round r. Note that
Fs,r can have negative elements, and that aggregate welfare does not depend on revg,s.15

5 Identification and Estimation

In this discussion I explain how the key parameters in the model are identified, and how
I estimate them.

Data and Sample Period The two primary data sources for the analysis are the bids and
results from MISO’s annual FTR auctions, and hourly realized congestion. This analysis
focuses on 2016, 2017, and 2018 Annual Auctions, in which FTRs were sold for the period
June 1, 2016 to May 31, 2019. Additional discussion of the data is provided in Appendix
A.

Congestion Factor Model I construct the factor matrix L as follows. First, I use the
methodology proposed by Zheng et al. (2022) to construct a congestion pattern matrix ∆S

15In particular, ∑g∈G revg,s = ∑i≤R p′s,iFs,i. Since I do not model the ARR allocation or the self-scheduling
decision, revg,s is exogenous. Appendix C presents a formula for approximating revg,s which can be used
to compute load welfare at the firm level, although I do not analyze firm level welfare in this draft.
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that captures the sensitivity of congestion prices at each node to shadow prices on all Nc

physical transmission constraints in the network that were binding at some point dur-
ing the analysis period. This matrix approximates the power transfer distribution factor
(PTDF) matrix that MISO uses to enforces the simultaneous feasibility constraint, but can
be constructed from publicly available data. In general, Nc � N. I therefore perform di-
mension reduction to extract P columns of ∆S that explain a large share of the variation in
hourly congestion prices observed during auction year y. For this purpose I implement a
custom forward selection algorithm that accommodates the hourly congestion price data.
L is a unitary normalization of the P columns obtained in this fashion. Intuitively, the
rows of L capture each nodes’ exposure to P key transmission constraints, and nodes that
are similarly exposed to these constraints are assumed to have similar congestion risk
profiles.

Once L is known, the hourly realized factor vector νh can be estimated by regressing
the hourly congestion price vector ηh on L. I estimate νh for each hour and then compute
the sample covariance matrix 1

H ∑h (ν̂h − ν̄h) (ν̂h − ν̄h)
′. U is the matrix of eigenvectors

of this matrix. I assume that the eigenvectors of Ψs correspond to the eigenvectors U of
the sample covariance matrix of the hourly factor realizations during year y. Intuitively, I
assume that beliefs about factor covariance are not too dissimilar from the realized factor
covariance. Hence, we have:

Ψs = UDλsU
′ (13)

where U is a known, unitary matrix and Dλs is a diagonal matrix of eigenvalues.

Pricing Model By construction, the K-dimensional price vector ps,r is a linear function
of an N-dimensional shadow price vector ρs,r. (In particular ps,r = Aρs,r where A is the
contract design matrix.) If (9) is the true model of FTR prices, then the shadow price
vector must satisfy:

ρs,r = χs − αs

{
LΨsL′ + σ2

e I
}

A′
(

∑
i≤r

Fs,i

)
(14)

where αs is the risk premia scalar from (9). I assume that this equation holds approx-
imately in the data. In particular, I introduce a mean zero error term εs,r, and assume
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that:

ρs,r = χs − αs

{
LΨsL′ + σ2

e I
}

A′
(

∑
i≤r

Fs,i

)
+ εs,r (15)

Moreover, by (13), we have:

ρs,r = χs − αs

{
LUDλsU

′L′ + σ2
e I
}

A′
(

∑
i≤r

Fs,i

)
+ εs,r (16)

The congestion forecast parameters to be estimated are θ =
{

cλ, χs, λs, σ2
s,e
}

. I take a
two-step approach to estimation. The procedure is discussed in more detail in Appendix
B.

In the first step, I use (16) as the foundation for a least squares-based estimation strat-
egy to recover χs and Ψs from the observed auction shadow prices. In particular, I find
the values of χs, αsλs, and αsσ

2
s,e that minimize the squared prediction error with respect

to the shadow price vector ρr in each auction round, constraining αsλs and αsσ
2
s,e to be

positive:

max
χ∈R,αλ≥0,ασ2

e≥0
∑
r∈R

∥∥∥∥∥ρr − χ + αs

{
LUDλsU

′L′ + σ2
e I
}

A′
(

∑
i≤r

Fs,i

)∥∥∥∥∥ (17)

A key observation is that LUDλsU
′L′A′

(
∑i≤r Fs,i

)
can be rewritten as Srλs for a known

matrix Sr, making it possible to reformulate the problem as a quadratic program in αsλs

and αsσ
2
e . Since αsλs and αsσ

2
e are constrained to be positive, I solve this problem numeri-

cally with a quadratic programming solver.
In the second step, I estimate cλ from realized congestion via minimum distance. The

assumptions that firms have correct beliefs implies that:

ηs ∼ N
(

χs, α−1
s

{
LUDαsλsU

′L′ + αsσ
2
e I
})

(18)

Manipulating this expression and substituting in cλ,s via (10), we can write:

cλ,sZ
(

χs, αsλs, αsσ
2
s,e

)
∼ N (0, I) (19)

where Z is a vector representing the independent components of the realized congestion
vector in each season at the first stage estimates. I obtain an estimate of cλ,s by minimizing
the Cramer-Von Mises distance between the empirical distribution of cλ,sẐ and the stan-
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dard normal distribution, pooling data from all auction events. Note that cλ,s is assumed
to be constant across auction years.

This empirical strategy is intended to infer firms beliefs about congestion from the
prices paid at the auction, under the assumption that (9) is the true model of FTR prices.
Alternatively, one could directly estimate χs and Ψs using historical congestion prices,
similar to how agents might learn these parameters in practice. The simulation approach
is perhaps more natural, and several earlier papers have proposed empirical strategies
for forecasting FTR payouts which could be adapted to this purpose (Zheng et al., 2022;
Acre et al., 2004b,a). However, this approach has significant limitations. For example,
agents in the market have access to important sources of information that are not publicly
available, such as the complete market model and forward looking outage schedules. At
best it would be possible to obtain a rough approximation to firms’ beliefs using publicly
available data, but this would be a difficult task in its own right.

Load Firm Primitives I now discuss identification of the load firm risk aversion param-
eter λg and the underlying contract delivery obligations eg,s. If g bids in round r of auction
s, then the first order condition of (7) is given by:

(
µg,s − pg,s,r

)
− λgΣg,s

(
qss

g,s + ∑
i≤r

qauc
g,s,i + eg,s

)
= 0 (20)

This equation has two key implications. First, the differences in a firm’s FTR purchases
across rounds identify the risk preference parameter λg. To be clear, since beliefs about
congestion are fixed across auction rounds, it must be the case that:

λgΣg,sqauc
s,g,r = −

(
ps,g,r − ps,g,r−1

)
(21)

which identifies λg conditional on Σg,s. Intuitively, the correlation between changes in the
load firm’s risk portfolio and the FTR auction clearing prices reveals the load firm’s risk
aversion.

A second observation is that (20) identifies the contractual obligation vector eg,s, since:

eg,s = qss
g,s + ∑

i≤r
qauc

g,s,i − λ−1
g Σ−1

g,s
(
µg,s − pg,s,r

)
(22)

provided that Σg,s is invertible and λg is known.
In practice µs and Σs are estimated with error, and firms bidding strategies are not

perfectly described by (7) in all cases. Since estimating the inverse of the congestion risk
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matrix Σs is challenging, second step estimation based on (21) and (22) is likely to de-
liver extremely noisy estimates. To mitigate this issue, I obtain a point estimate of λg by
introducing a mean zero error term ξs,g,r to (21) and running a (robust) regression. To
improve precision I assume λg is identical for all firms, although this is not required. In
case there are systematic sources of bias, I also consider other plausible values of λg when
discussing the results.

In comparison to risk preferences, eg,s is more difficult to estimate robustly, since eg,s

necessarily differs across firms and may be high dimensional. In the current draft I es-
timate eg,s with êg,s = qg,s + ∑i≤r qauc

g,s,i, which is biased according to (22) but does not
generate extreme point estimates.

6 Estimates

This section presents the key parameter estimates and discusses model fit.

6.1 Key Estimates

Figure 5 presents the second stage estimate of cλ,s as well as the implied point estimates
for αs in each year of the sample period and the point estimate for λg. (In the current
draft, I do not provide standard errors.) Recall that cλ,s =

√
6λ f Cs and that αs = M−1

s λ f .
Since the model of FTR speculation is highly stylized, I do not attempt to estimate Ms or
Cs from the data. However, it is useful to observe that there are about 50 speculators per
year, and that speculators earn trading revenues of about $1M per year at the median.16

Therefore, suppose that Ms ≈ 50 and Cs ≈ $1M. Then the point estimate of cλ,s = 3.06
implies that λ f ≈ 1.6

Cs
≈ 1.6× 10−6, which means that a speculator would demand $0.80 to

accept a 50-50 lottery to win or lose $1,000.17 On the other hand, the mean point estimate
for α implies that λ f ≈ 1.7×10−7

Ms
≈ 3.4× 10−9, which is much smaller. The point estimate

for λg falls between these two extremes.

16That is, FTR payouts exceed the portfolio purchase price by about $1M. Since auction prices and real-
ized congestion prices are observed, it is easy to calculate firm profits.

17In comparison, Bolotnyy and Vasserman (2019) find that firms bidding on construction projects would
demand $23 for the same lottery. It is reassuring that I find an estimate of similar magnitude, but smaller,
since the financial speculators in my setting are presumably less risk averse than the non-financial firms in
their setting.
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Figure 5: Risk Parameter Estimates

cλ,s 3.06
αs

2016 1.57× 10−7

2017 2.03× 10−7

2018 1.45× 10−7

λg 1.00× 10−7

6.2 Model Fit

Figure 7a shows that, for a typical auction event, the pricing model explains over 99% of
the variation in nodal clearing prices ρs,r. This simply reflects the fact that, although the
model is identified, it has a large number of degrees of freedom. To partial out the effect
of the poorly estimated χs vector, Figure 7b shows the R2 coefficient from a de-meaned
version of (16) at the estimated parameters, as follows:

ρs,r − ρ̄s = −αs

{
LUDλsU

′L′ + σ2
e I
}

A′
(

∑
i≤r

Fs,i −
1
R ∑

r≤R
∑
i≤r

Fs,i

)
+ εs,r − ε̄s (23)

The estimated parameters explain 15-30% of the de-meaned nodal price variance in most
auction events, shown in the figure. This suggests that the risk premium model does a
reasonable job of explaining price differences across auction rounds, despite its simplicity.
Note that I currently use P = 75 factors.

Next I consider how well the estimated model predicts realized congestion. Figure 8
presents the distribution of Ẑ for each auction event at the estimated value of cλ,s. The
distribution is presented as a boxplot, with the top and bottom of each box corresponding
to the 25%- and 75%-tiles of the empirical distribution. For comparison, the red lines indi-
cate the 25%- and 75%-tiles of the standard normal distribution. This provides suggestive
visual evidence that the estimated Ωs matrix (and by extension, αs) at least has the correct
order of magnitude, although there is some variance in the quality of model fit.

7 Contract tenor and welfare

Finally I perform a counterfactual exercise to quantify the tradeoff between narrow and
coarse contract designs. I first present the key assumptions underlying this counterfactual
before discussing the results.
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7.1 Annual FTR Contracts

Suppose that FTR contracts were only available on an annual basis (with separate con-
tracts for peak and off-peak hours). Since realizations of νs and εs are independent across
seasons, the distribution of annual FTR payouts is:

πy ∼ N
(
µy, Σy

)
(24)

where µy = ∑s∈Sy µs and Σy = ∑s∈Sy Σs. Under the annual design, g is only be able
to self-schedule and bid on an annual basis, even though its delivery obligations vary
seasonally. Aggregate speculator welfare is now:

Wy = ∑
g∈G

∑
s∈Sy

W0
g,s

(
qss

g,y + qauc
g,y

)
+ ∑

i≤R
p′y,iFy,i (25)

where qss
g,y is the quantity self-scheduled by g and qauc

g,y is the quantity purchased in the
auction. The expected utility term W0

g,s is the same as in (5), and therefore depends on eg,s.
The second term represents net auction revenue from speculators in the counterfactual
auction. I assume that potential speculators incur a participation cost Cy to bid on annual
contracts.

Just like under the status quo, a speculator who chooses to participate submits bids
for all available auction periods (in this case, there are two such periods, for peak and
off-peak contracts.)

Under these assumptions, the counterfactual clearing price vector is:

py,r = µy − αyΣy

{
∑
i≤r

Fy,i

}
(26)

where

αy = cλ,y

(
∑
i≤R

F
′
y,iΣyFs

y,i

)−1/2

(27)

and cλ,y =
√

6λ f Cy is the entry friction parameter. These expressions are simply the
annual contract analogues of (9) and (10), respectively.

Counterfactual Self-Scheduling & Capacity Since agents do not make self-scheduling
decisions strategically, the model does not make a prediction regarding qss

g,y. n general, I
do not have access to sufficient information about the underlying market model to deter-
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mine whether any particular allocation is feasible aside from allocations that I observe.18

For the purpose of the counterfactual I assume that g’s counterfactual self-schedule vector
coincides with its winter self-schedule vector under the status quo. That is, qss

g,y = qss
g,win.

In addition, since (7) is not likely to deliver precise predictions about load firms’ bidding
strategies (for the reasons discussed in the previous section), I assume that qauc

g,y,r = qauc
g,win,r,

regardless of the counterfactual clearing price. My choice of winter as the “reference
month” is motivated by the patterns in Figure 4 – peak load is close to its annual average
during the winter. In a similar spirit, I assume that Fy,r = Fwin,r. The major advantage
of this approach is that it ensures that the counterfactual allocation is feasible. IA disad-
vantage is that the total allocation of FTRs could change significantly if the switch from
3-month to annual contracts led significant changes in bidding behavior on the quantity
margin. This consideration is relevant in practice, but falls outside the scope of the current
model.

Bidding Costs If the variable costs associated with bidding on a single annual contract
are lower than the variable costs of bidding on four separate monthly contracts, then we
might expect Cy ≤ Cs. If variable costs are small, then Cy ≈ Cs. In order to compare
outcomes under the status quo and the counterfactual, I also need to know the ratio of
participation costs Cy/Cs. This parameter is unidentified. However, it is reasonable to
assume that 1 ≤ Cy/Cs ≤ 4. This can be understood in the following way. Suppose that
bidders incur a constant marginal cost for each available contract tenor, such that total
marginal costs are four times higher under 3-month contracts. If this marginal cost is
zero, then Cs = Cy. On the other hand, if this marginal costs accounts for the total cost of
bidding under the status quo, then Cs = 4Cy.

7.2 Results

This section considers how welfare changes under the annual contract design. I sep-
arately discuss the effects of increased congestion exposure and the change in auction
revenues collected from speculators before discussing the net effect of these changes.

Under the annual contract design, load firms are more exposed to congestion: firms
now hold too many FTRs in some seasons and too few in others. This affects aggregate
welfare through two channels. First, there is a change in firms’ expected congestion pay-
ments, which can be positive or negative. Second, the risk associated with congestion

18For example, the average allocation 1
|Sy| ∑s∈Sy

{
∑g∈G

(
qss

g,s + ∑r∈R qauc
g,s,r

)
+ ∑r∈R Fs,r

}
is not guaranteed

to be simultaneously feasible.
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exposure is weakly increased. Figure 9 shows these two effects for each load firm. The
y-axis indicates the change in expected congestion (in levels) while the x-axis indicates
the disutility from congestion risk (in logs).19 Many firms now have positive expected
congestion – these firms expect to receive more in FTR payouts than they will spend on
congestion costs. Indeed, the aggregate change in expected congestion is positive, as in-
dicated in Figure 10. The effect is larger in magnitude than the associated disutility from
increased risk (at the estimated value of λg). This represents an important source of wel-
fare gains for load firms under the annual contract design.

At the same time, auction proceeds collected from speculators also increase signif-
icantly, although the exact magnitude is sensitive to the participation cost parameter.
Auction proceeds (or revenues) change for three reasons, as summarized in Figure 11.
First, the supply vector of FTRs sold to speculators is necessarily different, resulting in an
increase in revenues even at the status quo prices.20 Next, as the supply vector changes,
aggregate market risk increases, leading speculators to demand increased risk premia at
the status quo entry level. Finally, increased risk premia induce more speculators to enter,
competing away profits and driving up prices. For any reasonable reasonable entry cost
parameter, the net effect is large.

Figure 6 considers the overall change in welfare combining these effects under the sta-
tus quo and at the upper and lower bounds for Cy. The first three columns show the three
major components of speculator welfare discussed above: expected congestion payments
due to the misalignment between q and e, the welfare loss from uncertainty about con-
gestion, and net auction proceeds from speculators. These three columns are summed in
the “Load Welfare” column. In both counterfactuals, auction revenues and positive FTR
payouts lead to an increase in welfare, despite the loss in welfare from increased risk.
However, this conclusion is sensitive to the estimate of λg. The final column in Figure 6
indicates the level of risk aversion for which the welfare loss in the second column would
be severe enough to make load firms indifferent between the status quo and the annual
contract counterfactual. For reasonable levels of risk aversion, risk disutility would be
sufficiently large for the sign of the welfare effect to reverse.

8 Conclusion

FTRs play an important role in decentralized energy markets. Efficient FTR markets are
important for incentivizing investments in generation assets. I study the effect of contract

19The size of each circle indicates the gross volume of the firm’s counterfactual FTR portfolio.
20This is necessarily the case, since MISO now only specifies one capacity vector instead of four.
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Figure 6: Status Quo and Counterfactual Welfare Bounds ($M/year)

Scenario

status quo1

Load
Congestion

Cy/Cs=1.002

Load
Risk

Cy/Cs=0.253

Speculator
Revenue

0.0

Load
Welfare

17.9

Breakeven
lambda_g

17.9

−0.0

−2.4

−2.4

158.3

199.6

225.0

158.3

215.1

240.4

NA

2.47e−06

3.53e−06

design in FTR markets. The ISO must balance firms’ hedging needs against the need to
attract a thick market of speculators to absorb residual FTR capacity. I build and estimate
a model to explore this tradeoff in the context of the MISO FTR allocation mechanism.
With longer contracts, auction proceeds increase substantially, benefitting load firms, but
opportunities to hedge risk are restricted. I find that the welfare losses from increased
exposure to congestion risk are relatively small, but this result is sensitive to the estimated
risk aversion parameter.
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Figure 7: Pricing Model Fit
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(b) De-meaned Prices
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Figure 8: Congestion Forecast Fit
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Figure 9: Change in Congestion Exposure by Firm
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Figure 10: Welfare Change from Congestion Exposure ($M)
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Figure 11: Change in Auction Proceeds ($M)
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A Data & Sample Construction

This section describes the procedure used to prepare the analysis dataset. All data sources
used in the analysis are obtained from the MISO website.

MISO reports all bids and offers in the FTR auction as well as comprehensive auction
results. The primary files of interest include the FTR Annual Auction Bid and Offer files
and the FTR Annual Auction Results files. The Annual Auction Results files include the
total volume of FTRs allocated by market participant and FTR path, as well as the nodal
shadow prices. Two significant data cleaning steps are required:

• In the bidding data, bidders are identified by an asset owner ID. In the auction
results, firms are identified by a market participant ID. MISO does not provide a
crosswalk. Therefore, I manually construct a crosswalk by comparing bids with
allocations. There are frequently multiple asset owner IDs associated with the same
market participant ID.

• I infer self-scheduling volumes from the FTR Annual Auction Bid and Offer Files,
under the assumption that all self-schedule requests are honored in full and appor-
tioned across rounds according to the procedure described in the Business Practice
Manual.

Hourly realized nodal congestion prices are reported in the Day-Ahead Ex Post LMP files.
This information can be used to compute the payout associated with a particular FTR, in
addition to the purposes described in the text. In some cases, the source and sink nodes
associated with a given ARR or FTR at the time of the annual allocation are re-mapped to
other nodes during the year. If the LMP corresponding to an auction node is not available
in the realized congestion data, I replace it with the LMP of the most similar node for
which congestion data is available. The “similarity” between nodes is determined by the
frequency with which nodes had the same LMP in hours when an LMP was reported for
both nodes.

A speculator is defined to be a market participant that does submit a self-schedule
request in any period during the sample. This is reasonable since only ARR holders are
able to submit self-scheduling requests, and ARRs are allocated on the basis of usage of
the physical network. Unfortunately, the distinction between load firms and speculative
firms is not always clear. In this case, self-scheduling requests could be submitted by a
trading firm on behalf of a physical firm, and firms with physical operations might engage
in significant amounts of speculative trading.
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B Estimation Details

As described in Section 5, I estimate the model in two stages:

1. In the first stage, I use realized auction prices to estimate firms’ forward-looking
price signals.

2. In the second stage, I use realized congestion prices to infer the risk premia shifter
cλ

In the first stage I use a constrained least squares approach. The problem is:

max
χ∈R,αλ≥0,ασ2

e≥0
∑
r∈R

(
ρr − χ + αΩA′Fr

)′ (
ρr − χ + αAΩA′Fr

)
Notice that χ is unconstrained. An analytical expression for χ conditional on αΩ is:

χ = ρ̄ + αΩA′ F̄

Therefore the objective function can be re-written as follows:

∑
r∈R

(
ρr − ρ̄ + αΩA′ (Fr − F̄)

)′ (
ρr − ρ̄ + αΩA′ (Fr − F̄)

)
Expanding the expression for Ω gives:

∑
r∈R

Z′rZr

where:

Zr = ρr − ρ̄ + αLUDλ (LU)′ A′ (Fr − F̄) + ασ2
e A′ (Fr − F̄)

This can be written explicitly as a quadratic program in αλ and ασ2
e . To see this, I first

write:

Sr =
[
(Fr − F̄)′ A (LU)⊗ (LU)

]
B

where B is a matrix that selects the columns of the full Kronecker product in the term on
the left corresponding to the diagonal elements of Dλ. Then the problem to be solved is

30



therefore:

max
αλ,ασ2

e≥0
∑
r∈R

(
ρr − ρ̄ + Sr (αλ) + Dr

(
ασ2

e

))′ (
ρr − ρ̄ + Sr (αλ) + Dr

(
ασ2

e

))
which is a quadratic program with simple inequality constraints, and can therefore be
solved efficiently. I solve the problem using KNITRO’s nonlinear least squares solver.

Once χ, αλ, and ασ2
e are estimated, an estimate of cλ can be obtained in the following

way. Assume that cλ implies a unique α parameter for each auction year y in the data,
which we can denote αy. In particular, recall that for each auction year y in the data, we
must have:

α = cλ

 ∑
s∈Sy

F′s,r A′
{

LuDλu′L′ + σ2
s,u I
}

AFs,r

−1/2

and therefore:

α1/2
y = cλ

 ∑
s∈Sy

F′s,r A′
{

LuDαλu′L′ + ασ2
s,u I
}

AFs,r

−1/2

Since agents beliefs are correct, the distribution of ex post congestion prices η satisfies:

ηs ∼ N
(

χs, α−1
y LuDαλ (Lu)′ + α−1

y ασ2
e I
)

where y is the relevant auction year. Re-arranging yields:

α1/2
y (ηs − χs) ∼ N

(
0, LuDαλ (Lu)′ + ασ2

e I
)

And since Lu is unitary, we have:

α1/2
y Lu′ (ηs − χs) ∼ N

(
0, Dαλ + ασ2

e I
)

And therefore:

α1/2
y D−1/2

αλm+ασ2
e
Lu′m (ηs − χs) ∼ N (0, 1)

provided that αλm + ασ2
e > 0. (In practice, αλ + ασ2

e may be estimated on the boundary,
in which case αλm + ασ2

e = 0.) Substituting the expression for αy from above gives the
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following:

cλ

 ∑
s∈Sy

F′s,r A′
{

LuDαλu′L′ + ασ2
s,u I
}

AFs,r

−1/2

D−1/2
αλm+ασ2

e
Lu′m (ηs − χs) ∼ N (0, I)

Therefore cλ can be estimated under the assumption that the z-scores on the left hand side
are drawn from a standard normal distribution. In particular, I construct ĉλ as the value
of cλ that minimizes the Cramer-Von Mises statistic of the ecdf of z values constructed in
this manner.

C Supplemental Material

C.1 Model

Allocation of Excess Auction Revenues Let Fs,r denote the vector of FTRs sold to spec-
ulators in round r. Let Kg,s denote g’s ARR portfolio. Then g receives rg,s = ∑r≤3 rg,s,r,
where rg,s,r is defined to be:

rg,s,r =
(

Kg,s − qss
g,s

)′
Hg ps,r +

{
‖Kg,s − qss

g,s‖
∑g∈G ‖Kg,s − qss

g,s‖

}(
p′s,rFs,r − ∑

g∈G

(
Kg,s − qss

g,s

)′
Hg ps,r

)

This allocation rule is similar to the one used by MISO in practice.

Speculator Entry Let Πs denote a speculator’s profit in auction s when there are Ms

entrants. Then the zero profit condition on speculator entry is:

∑
s∈Sy

Πs (Ms) = Cs

Formally,

Πs =

(
Fs

Ms

)′
µs −

λ f

2

(
Fs

Ms

)′
Σs

(
Fs

Ms

)
− ∑

r∈R

(
Fs,r

Ms

)′
ps,r
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Assume that one third of the quantity is allocated in each auction round, so that Fs,r =
1
3 Fs.

Then:

Πs =

(
Fs

Ms

)′
µs −

λ f

2

(
Fs

Ms

)′
Σs

(
Fs

Ms

)
−
(

Fs

3Ms

)′(
∑
r∈R

ps,r

)

The equilibrium price vector is:

ps,r = µs − αsΣs

{
∑
r≤r

Fs,r

}
(28)

where αs = λ f M−1
s . Therefore:

∑
r∈R

ps,r = 3µs − λ f M−1
s

{
1
3

ΣsFs +
2
3

ΣsFs +
3
3

ΣsFs

}
= 3µs − λ f M−1

s 2ΣsFs

And:

Πs =

(
Fs

Ms

)′
µs −

λ f

2
M−2

s F′sΣsFs −
(

Fs

Ms

)′
µs + λ f M−2

s

(
2
3

)
F′sΣsFs

=

(
1
6

)
λ f M−2

s F′sΣsFs

So the zero profits condition is:

1
6

λ f M−2
s

 ∑
s∈Sy

F′sΣsFs

 = Cs

Therefore:

Ms =

√
1
6

λ f C−1
s

 ∑
s∈Sy

F′sΣsFs

1/2

Hence:

α =
√

6λ f Cs

 ∑
s∈Sy

F′sΣsFs

−1/2
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